Grading Scheme :: ECE 445 - Senior Design Laboratory

Grading Scheme

 

The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Project Selection Form Individual 5 None
Lab Notebook Individual 50 PDF
Weekly TA Meetings Team N/A None
Weekly Team Update Meeting Team 3/session None
Team Contract Team 5  
Project Proposal Team 25 PDF
PCB Design Exercise Individual 10 PDF
Soldering Exercise Individual 10 PDF
Design Document
Requirements and Verification
Team 40 PDF
Individual Progress Report Individual 25 PDF
Mock Demo Individual 5 None
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Peer Reviews (2 total) Individual 40 (total) None
Teamwork & Participation Individual 20 None

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

3D Scanner

Peiyuan Liu, Jiayi Luo, Yifei Song, Chenchen Yu

Featured Project

# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.