Grading Scheme :: ECE 445 - Senior Design Laboratory

Grading Scheme


The grading scheme for the course, as well as links to specific requirements for each assignment/deliverable and evaluation sheets, are given in the table below. Due dates for each assignment/deliverable can be found on the course Calendar. Please note:

Below is the points breakdown for all assignments/deliverables for the course, sorted chronologically:

Item Team / Individual Score Points Evaluation Sheet**
Project Selection Form Individual 5 None
Lab Notebook Individual 50 PDF
Request for Approval Team 5 None
Weekly TA Meetings Team N/A None
Weekly Update Meetings Team N/A None
Project Proposal Team 25 PDF
PCB Design Exercise Individual 10 PDF
Soldering Exercise Individual 10 PDF
Design Document
Requirements and Verification
Team 40 PDF
Weekly Update Points Team 3/session None
Individual Progress Report Individual 25 PDF
Mock Demo Individual 5 None
Mock Presentation Individual 5 None
Final Demo * Team 150 PDF
Final Presentation * Individual 50 PDF
Final Report: Technical Team 30 PDF
Final Report: English/Format Team 20 PDF
Peer Reviews (3 total) Individual 15 (total) None
Teamwork & Participation Individual 20 None

* Grades for these will be the average of the TA and Instructor grades; peer review grades will be used to provide feedback.
** Evaluation Sheets are subject to minor changes.

Authentication System for SARS-CoV-2 Management

Jiongfan Chen, Zheyuan Zhang, Zhonghao Zhang, Pengyang Zhou

Featured Project


- Pengyang Zhou [pz6]

- Jiongfan Chen [jc47]

- Zheyuan Zhang [zheyuan5]

- Zhonghao Zhang [zz46]


Preventing SARS-CoV-2 spread requires managing access to public spaces using a phone app. Scanning QR code at the entrance is inconvenient and leads to crowding. Specifically, access control in some other places requires users to take out their mobile phones and show green or blue codes to verify their identity, which also makes users feel troublesome. How to let the user be able to pass the access control quickly is a huge problem to be solved. On the other hand, the health code observed by the human eye is easy to fabricate. How to improve security is also a big problem.


We plan to design a wearable wristband for users. When passing through the access control, a corresponding RFID detection device can send identity query requests to users' wristbands from a distance, and the users' wristbands will respond to convey users' identity and health information. In addition, the wristband itself will send out a signal every few seconds to interact with other wristbands. This would help to monitor people suspected of being infected.


### Wristband Subsystem:

- Broadcast the user token for other wristbands to record the passers-by.

- Receiver the request for identity from the receiver and send back the user token.

### Inspection Device at Access Control Subsystem:

- Send signals to the wristband and receive the feedback of the user identity information, through the database verification and comparison to determine the health status of the user.


- The wristband connects the inspection device and carries out information transfer successfully, and interconnects with other wristbands.

- The inspection device and database can verify the identity and health information of the user trying to enter.

- If the wristband is lost, it cannot be used by others.

- The user token is hard to be fabricated.


- Wireless communication hardware design, setup, and verification - Zhonghao Zhang (EE).

- Design and manufacture of the wristband and inspection device at access control - Jiongfan Chen (ME).

- Build the data center; Encryption and handling of data - Zheyuan Zhang & Pengyang Zhou (ECEs).