Checkout, Awards, and Pizza

Description

Checkout Day usually occurs on Reading Day after Final Reports have been turned in. You'll need to turn in your lab notebook, return all of the major parts belonging to the university to your TA, and make sure that nothing is missing from your lab kit before you will receive a grade in the class. After Checkout, a short Awards ceremony will be held to honor those who, in the course staff's opinions, have managed to deliver exemplary projects during the semester. Immediately afterwards, you are all welcome to celebrate your project completion with free pizza and soda with the rest of you classmates!

Requirements and Grading

The Checkout Form will be your documentation that you turned in the lab kit - both you and your TA need to sign it before you turn it in to your TA.

Submission and Deadlines

The specific date and time for lab checkout can be found on the the course calendar.

A crowd-sourcing urban air quality monitoring system with bikes

Kaiwen Hong, Zhengxin Jiang, Haofan Lu, Haoqiang Zhu

Featured Project

**Problem**

For public bike users, someone may concern about the air quality in which they are currently riding, as well as the places they are going to. However, currently there is no such an air quality monitoring system which provides air quality information in specific areas inside a city such as Haining.

**Solution Overview**

The idea is to apply air quality monitoring devices on the public bike system. The public bike system in Haining is a perfect carrier for IoT (Internet of Things) devices and urban sensing since it has a large and stable user group and all bikes are managed by official organization which means unified modification on all bikes can be done. A monitoring device integrated on the bike can provide the real-time information that users want to know and share data with other users through a cloud server. A real-time air quality map can be created for users with the contribution from all running bikes.

**Solution Components**

Subsystem 1 – on-bike air quality monitoring device. The subsystem is a stm32 microcontroller based design, integrated with air contaminant sensor, speed meter and data transmission modules. Once connected to a smartphone, the subsystem will keep transmitting real-time data to the smartphone.

Subsystem 2 – Software include a user interface and a server. The user interface can be either an app or a website on smartphone. The user interface receives sensor data from the hardware subsystem, displays the real-time statistics, uploads sensor data to server and receives the air quality map from server. The server processes data from all running bikes, creates a real-time air quality map and returns it back to users.

**Criterion for Success**

1. Success of data collection: stable real-time statistic display on user interface, stable data collection on server.

2. Air quality visualization: The air quality map correctly reflects the air quality in Haining city. For example, the concentration of air contamination should be higher in heavy traffic than in intl campus.

3. Speed control: The on-bike device or smartphone should give an alert when the monitored speed exceeds the upper limit or the user set range. This is not the core function of our design, but we add it as we think the function makes sense for safety purpose.