Course Overview

Welcome to ECE 445/ME470 Senior Design ZJUI Spring 2022!

Welcome to the class! If you've looked at the course Calendar, you've probably already noticed that this class is quite different from most other classes in the department. The class only meets as a whole for the first four weeks of the semester. During these lectures you will meet the Course Staff, learn about specific requirements, resources, and project choices for the course, and have a chance to meet other students. These are some of the most important weeks for the class since the decisions you make during this time will determine what you'll get out of this class and, in many ways, how much you'll enjoy it.

In this course, you will form teams and propose projects that solve an engineering problem in a unique way. The projects generally involve a device that you will design, build, and demonstrate. We are excited to see what projects you create with this semester! In the midst of an ever changing learning environment, we want to encourage you to think, create, design, and build exemplary projects. We want to ensure that your experience in 445 demonstrates your potential as an engineer graduating from the University of Illinois.

This course is taught hybridly for ME and ECE students, and some projects are mentored by ZJUI faculty. Here are a few items that you will need to consider as we enter into this semester.

Prosthetic Control Board

Featured Project

Psyonic is a local start-up that has been working on a prosthetic arm with an impressive set of features as well as being affordable. The current iteration of the main hand board is functional, but has limitations in computational power as well as scalability. In lieu of this, Psyonic wishes to switch to a production-ready chip that is an improvement on the current micro controller by utilizing a more modern architecture. During this change a few new features would be added that would improve safety, allow for easier debugging, and fix some issues present in the current implementation. The board is also slated to communicate with several other boards found in the hand. Additionally we are looking at the possibility of improving the longevity of the product with methods such as conformal coating and potting.

Core Functionality:

Replace microcontroller, change connectors, and code software to send control signals to the motor drivers

Tier 1 functions:

Add additional communication interfaces (I2C), and add temperature sensor.

Tier 2 functions:

Setup framework for communication between other boards, and improve board longevity.

Overview of proposed changes by affected area:

Microcontroller/Architecture Change:

Teensy -> Production-ready chip (most likely ARM based, i.e. STM32 family of processors)

Board:

support new microcontroller, adding additional communication interfaces (I2C), change to more robust connector. (will need to design pcb for both main control as well as finger sensors)

Sensor:

Addition of a temperature sensor to provide temperature feedback to the microcontroller.

Software:

change from Arduino IDE to new toolchain. (ARM has various base libraries such as mbed and can be configured for use with eclipse to act as IDE) Lay out framework to allow communication from other boards found in other parts of the arm.