Week Monday Tuesday Wednesday Thursday Friday
Lecture 1 10:00a - 12:00p
Project Selection Form due 12:00p
Lecture 2 10:00a - 12:00p
Lecture 3 10:00a - 12:00p
Lecture 4 10:00a - 12:00p
Project Proposal due 11:59p
Weekly Update Meeting 10:00a - 12:00p
Weekly Update Meeting 10:00a - 12:00p
Design Document due 11:59p
Weekly Update Meeting 10:00a - 12:00p
Project Proposal Regrade due
Tomb-Sweeping Day
Teamwork Evaluation I due 11:59p
Weekly Update Meeting 10:00a - 12:00p
Individual Progress Report due 11:59p
Weekly Update Meeting 10:00a - 12:00p
Design Document Revision due - 11:59p
Weekly Update Meeting 10:00a - 12:00p
Weekly Update Meeting 10:00a - 12:00p
International Labor Day
International Labor Day
International Labor Day
Weekly Update Meeting 10:00a - 12:00p
Main Mock Demo Day D225
Mock Demo
Mock Demo
Mock Demo
Final Report draft due 11:59p
Final Demo Block 1 due
Final Demo Block 2 due
Final Demo Block 3 due
Final Demo Block 4 due
Final Demo Block 5 due
Final Presentation due
Final Individual Design Report Draft due
Final Individual Design Report due 11:59p
Functionality Demonstration Video (extra credit) due 11:59p
Final Report due 11:59p
Teamwork Evaluation II due 11:59p

Electromagnetic Launch System with Switchblade Drone

Zheng Fang, Shuyang Qian, Xinyu Xia, Ruike Yan

Featured Project


Shuyang Qian (sq8)

Zheng Fang (zhengf4)

Xinyu Xia (xinyux4)

Ruike Yan (ruikey2)


Electromagnetic Launch System with Switchblade Drone


The Switchblade UAVs in use today tend to use pneumatics for power. It has been limited by its launching speed, cost, and portability. Making use of electromagnetic technology can improve the design. The project aims to develop an electromagnetic launch system which can launch switchblade drone well.


The project involves the development of an electromagnetic launch system and a switchable drone. The launch system is designed to propel a fixed-wing drone to a relatively high speed, using electromagnetic forces. The drone is equipped with a switchable wing mechanism that allows it to be housed within the launching track during launch and then deployed for flight after exiting the launching system. There are several main steps to finish the project well:

Design and construction of the launch system

Development of the foldable wing mechanism

Integration of subsystems

Testing and validation Overall, the project's success will depend on the effective implementation of these solutions, which will require careful planning, design, and testing to achieve the desired outcome of a functioning electromagnetic launch tube with a switchblade drone.


The solution will consist of the following components:

Electromagnetic launch system: the system includes multiple sets of acceleration coils, a base to hold the coils, a base with both a guide slot for the horizontal movement of the ejection ram, and a launch cart to hold the drone.

Switchblade drone: the system includes the main body of the drone, a pair of foldable wings, a folding device powered by a torsion spring, and an attachment device for the drone to the ejection ram.

Electrical control system: the system mainly controls the charging and discharging of the coil, the main components are Hall Effect Sensors, N-Channel Power MOSFETs, MOSFET Heatsinks, High Speed Power MOSFET Drivers, Resistors, Momentary Switch.


The success of the project will be determined by the following criteria:

Portability: Weather the system is small and portable enough to be carried in a suitcase or other boxes.

Speed of the launched plane: The speed of the plane needs to be fast enough so that it can travel enough distance and realize some additional functions.

Safety: The system should not cause danger to the operator or other people around it. Potential dangers are, for example, Mechanical scratches and electric leakage.

Stability: The success rate of launching the plane, and the route of the plane after each launching should be similar.


Shuyang Qian (ME): Responsible for designing and constructing the mechanical part of electromagnetic launch system including the guide rails, fixing parts and installation of coils.

Zheng Fang (ECE): Responsible for designing and soldering the circuit for controlling the charging and discharging of the coil.

Xinyu Xia (ME): Responsible for designing and constructing the switchblade drone which can be accelerated by the electromagnetic launch system and whose foldable wings can run well.

Ruike Yan (EE): Responsible for designing the control system for switchblade drone which lets the drone continues to fly after leaving the electromagnetic launch system.