Using the Website

Project Page

The Project Pages were created in an effort to help promote student projects. The Project Pages provide a showcase where employers, other students, and friends can see what UIUC students are capable of. Many employers, in particular, consider a good Senior Design Project to be just as valuable as internship experience. The Project Pages will develop over time into a valuable library of practical engineering knowledge. Some of the best projects will be identified each semester and placed in the Senior Design "Hall of Fame," while the rest will be accessible by semester and search engine.

Updating Project Information

Once your project has been approved on the discussion board by the Instructor, you should promptly update your project information. In order to do so, find your project on the Project page, and click its title. When a frame expands, click on "Edit." Next, enter your UIUC netid and password. The system will lookup your project and prompt you for information such as your project's title. Please fill in the information that you wish to have appear for your project, and then click on the submit button. The required fields are marked so. You can update this information at any time. We strongly urge you to keep a backup of all of the information, and we would like to caution you of one scenario in particular. If multiple people attempt to edit this information at the same time, the second person to submit the changes will overwrite the first person's changes. Also, be sure to logout when you are done by closing the web browser. It is important that you provide a project desciption. It should be a brief overview of your project and explanation of why it is worth doing. Please provide this information as soon as possible and try to limit the length to about 250 words.

Submit Schedule

After updating your project information, you should proceed to the Submit Schedule page. Here each student should submit his/her schedule so that your TA can schedule a weekly meeting time. We know that there are a lot of boxes to check, but we need this detailed information because of how difficult it is to match schedules. The information is displayed in a convenient way for TAs when it is time for them to schedule meeting times. The system is very intuitive so instructions are not needed. NOTE: Please be sure that the schedule you submit is as accurate as possible, since you won't be able to edit it later!

After submitting your schedule, you should familiarize yourself with the "Upload Files" page.

Uploading Files

This area is used to upload files such as the Proposal, the Final Paper, Images, and additional files. When a file is uploaded, it is renamed and limited to a specified size. Special documents such as Proposals and Final Papers should be uploaded into the appropriate slot and will automatically be added to your Project Page. Images and other files can be uploaded into any other slot such as "file1." To upload a file, simply select which slot to place it in, and then select the file from your computer using the "Browse" button.

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.