Ethical Guidelines

University of Illinois trained engineers are the best and most highly sought in the world. Our graduates are superbly trained, highly competent, and creative. This, however, is not enough. Our engineers must also be trusted to conduct themselves according to the highest ethical standards. All teams must address ethical considerations in their projects. This requirement has two parts.

First, there is a stringent Code of Ethics published by professional societies, such as IEEE and ACM. The power of these Codes of Ethics is to provide guidance to engineers in decision making and to lend the weight of the collective community of engineers to individuals taking a stand on ethical issues. Thus the Code of Ethics both limits the professional engineer and empowers the professional engineer to stand firm on fundamental ethical bedrock. All teams must read the IEEE code and ACM code and comment on any sections of the code that bear directly on the project.

Second, we expect our students to have personal standards of conduct consistent with the IEEE and ACM Codes of Ethics, but also beyond it. That is, there are areas of ethics not addressed by these Codes that the engineer may consider in taking on projects or jobs or making other professional decisions. These are personal standards and choices. In the context of the class, there are no right or wrong answers here. Our students simply need to demonstrate that they are thinking deeply about their own decisions and the consequences of those decisions. We encourage our students to consider the wider impact of their projects and address any concerns raised by potential uses of the project. Students should ask themselves, "Would I be comfortable having my name widely attached to this project? Do I want to live in a society where this product is available or widely used? Would I be proud of a career dominated by the decision making demonstrated here?" Remember that UIUC engineers have a long history of inventions that really has changed the world.

If the students feel that these Codes of Ethics does not directly bear on their project and that there are no other reasonable concerns, they should not invent issues where there are none. Students will still be expected to be familiar with the IEEE Code of Ethics and ACM Code of Ethics.

Robot for Gym Exercise Guidance

Zifei Han, Dalei Jiang, Kunle Li, Chang Liu

Featured Project

TEAM MEMBERS

Dalei Jiang (daleij2)

Zifei Han (zifeih2)

Chang Liu (changl12)

Kunle Li (kunleli2)

PROJECT TITLE

Robot for Gym Exercise Guidance

PROBLEM

In modern society, daily fitness is a necessary life choice for healthy people. When it comes to fitness, the standard of movement is very important. However, hiring a coach exclusively for instruction is sometimes not a convenient and economical option. We think robots are perfectly capable of determining whether a person's movements are in place. To this end, we need to propose a scheme to design a robot that can walk behind people and use certain technologies to identify human movements when people are moving, compare with the existing action models, and give an evaluation.

SOLUTION OVERVIEW

Our solution is to design a robot that included a chassis that drove the motion on the bottom and a computer operating system and camera on the top. With ultrasonic radar and cameras, the robot can follow the target. When the "motion assessment" module starts to operate, the camera will capture video information and begin motion analysis at the same time. The analysis of human motion will be completed as soon as possible and the standard evaluation of motion will be given. At the same time, we will design some multimedia files, such as sound and video, to interact with the user.

SOLUTION COMPONENTS

Based on the introduction above, several systems need to be implemented to realize the solution.

SUBSYSTEM 1: BOTTOM MOBILE PLATFORM PROGRAMMING

We plan to take use of the EAI SMART robot platform as the base movement platform of the robot. We will do the programming based on the ROS system to realize automatic navigation, path planning, and object tracking.

SUBSYSTEM 2: SKELETAL BINDING AND MOVEMENT ANALYSIS OF THE HUMAN BODY

The most important part of this program is that we will use the Mask R-CNN to do the skeletal binding to determine the human's movement. We will try to train an efficient model to help us realize fast analysis.

SUBSYSTEM 3: MAN-MACHINE INTERACTIVE SYSTEM

As a user-oriented product, we need to design a friendly human-computer interface to realize the free conversion of functions.

SUBSYSTEM 4: MOVEMENT STANDARD ALGORITHM

We need to devise an algorithm to assess the deviation between the gymnast's movements and the standard. This algorithm is very important for the final product performance feedback.

CRITERION FOR SUCCESS

The robot can self-navigate to find people in the gym.

The robot can monitor the person doing exercise and extract human poses.

The robot can check whether the person is doing correctly in the exercise.

DISTRIBUTION OF WORK

Dalei Jiang: Skeletal binding and movement analysis of the human body

Zifei Han: Bottom mobile platform programming

Chang Liu: Man-machine interactive system building

Kunle Li: Movement standard algorithm designing