Lectures :: ECE 445 - Senior Design Laboratory

Lectures

Spring 2023 Lecture Material:

 

Lecture #1:

(February 17, 2023)

 

 

Getting Started

  • Welcome to the class! (pptx, pdf)

 

 

Pre-Lecture #2:

(before February 24, 2023)

 

 

Beyond Ideation

 

 

Lecture #2:


(February 24, 2023)

 

 

Moving Forward

  • RFA, Proposal, High-Level Requirements, R&V Tables, and Block Diagram details (Slides)

 

Pre-Lecture #3:


(before March 3, 2023)

 

 

Design and Writing Tips

 

 

Lecture #3:


(March 3, 2023)

 

 

Last stop before the Proposal

  • Introduction (pptx)
  • Proposal Details (pptx)
  • Proposal Logistics (pptx)
  • Lab Notebooks (pptx)

 

Pre-Lecture #4:


(before March 10, 2023)

 

 

PCB Exercise Tips

  • Modular Design & Circuit Debugging (pdf)
  • Why PCB Exercise? (pptx)

 

Lecture #4:


(March 10, 2023)

 

 

Intellectual Property

  • Patents - Henry Wang, President IPwe
  • Weekly Meetings Info (pptx)
  • Proposal Q&A

Spring 2020 Video Lectures:

Brainstorming

Finding a Problem (Video)
Generating Solutions (Video)
Diving Deeper (Video)
Voting (Video)
Reverse Brainstorming (Video)
Homework for Everyone (Video)

Important Information

Using the ECE 445 Website (Video)
Lab Notebook (Video , Slides)
Modular Design (Video, Slides)
Circuit Tips and Debugging (Video , Slides)
Spring 2018 IEEE Soldering Workshop (Slides)

Major Assignments and Milestones

Request for Approval (Video, Slides)
Project Proposal (Video, slides)
Design Document (Video, slides)
Design Review (Video, slides)
Writing Tips (Video, slides)

An Intelligent Assistant Using Sign Language

Qianzhong Chen, Howie Liu, Haina Lou, Yike Zhou

Featured Project

# TEAM MEMBERS

Qianzhong Chen (qc19)

Hanwen Liu (hanwenl4)

Haina Lou (hainal2)

Yike Zhou (yikez3)

# TITLE OF THE PROJECT

An Intelligent Assistant Using Sign Language

# PROBLEM & SOLUTION OVERVIEW

Recently, smart home accessories are more and more common in people's home. A center, which is usually a speaker with voice user interface, is needed to control private smart home accessories. But a interactive speaker may not be the most ideal for people who are hard to speak or hear. Therefore, we aim to develop a intelligent assistant using sign language, which can understand sign languages, interact with people, and act as a real assistant.

# SOLUTION COMPONENTS

## Subsystem1: 12-Degree-of-Freedom Bionic Hand System

- Two moveable joints every finger driven by 5-V servo motors

- The main parts of the hand manufactured with 3D printing

- The bionic hand is fixed on a 2-DOF electrical platform

- All of the servo motors controlled by PWM signals transmitted by STM32 micro controller

## Subsystem2: The Control System

- The controlling system consists of embedded system modules including the microcontroller, high performance edge computing platform which will be used to run dynamic gesture recognition model and more than 20 motors which can control the delicate movement of our bionic hand. It also requires a high-precision camera to capture the hand gesture of users.

## Subsystem3: Dynamic Gesture Recognition System

- A external camera capturing the shape, appearance, and motion of objective hands

- A pre-trained model to help other subsystems to figure out the meaning behind the sign language. To be more specific, at the step of objects detection, we intended to adopt YOLO algorithm as well as Mediapipe, a machine learning framework developed by Google to recognize different sign language efficiently. Considering the characteristic of dynamic gesture, we also hope to adopt 3D-CNN and RNN to build our models to better fit in the spatio-temporal features.

# CRITERION OF SUCCESS

- The bionic hand can move free and fluently as designed, all of the 12 DOFs fulfilled. The movement of single joint of the finger does not interrupt or be interrupted by other movements. The durability and reliability of the bionic hand is achieved.

- The controlling system needs to be reliable and outputs stable PWM signals to motors. The edge computing platform we choose should have high performance when running the dynamic gesture recognition model.

- Our machine could recognize different sign language immediately and react with corresponding gestures without obvious delay.

# DISTRIBUTION OF WORK

- Qianzhong Chen(ME): Mechanical design and manufacture the bionic hand; tune the linking between motors and mechanical parts; work with Haina to program on STM32 to generate PWM signals and drive motors.

- Hanwen Liu(CompE): Record gesture clips to collect enough data; test camera modules; draft reports; make schedules.

- Haina Lou(EE): Implement the embedded controlling System; program the microcontroller, AI embedded edge computing module and implement serial communication.

- Yike Zhou(EE): Accomplish object detection subsystem; Build and train the machine learning models.