Lab Notebook

Video Lecture

Video, Slides

Description

Keeping a professional lab notebook is a requirement of the course. If maintained properly, lab notebooks serve as an official and legal record of the development of the intellectual property related to your project. It also serves as a way to document and track changes to your design, results of all tests performed, and the effort you have put into your project. A well-kept notebook will simplify writing of all required documentation for this course (design review, final paper, etc) as all of the information in those documents should already exist in your notebook. Finally, keeping a notebook is simply good engineering practice and likely will be required by future employers, so it is a good idea to get in the habit of maintaining one now.

The Book: Any notebook with permanent bindings designed for laboratory record keeping is acceptable. Those with pre-numbered pages are required. Ideally, it should have graph rulings on alternate pages, or else quarter-inch square grid on all pages. We will not accept normal spiral-bound notebooks, as these are not permissible in court since pages can be easily replaced. While most of you probably won't be taking your design to court, we want to teach you to get into the habit of keeping legally acceptable records. Some of you may decide you do want to patent your project, so it will be very beneficial to have given yourself the legal advantage from the start.

We will allow you to keep your notebook on a computer, but entries will still need to be printed out and attached to a physical notebook for weekly meetings. Keep in mind also that it may be easier in the long run to scratch out rough graphs and equations on paper, so try to plan ahead. If you know you'll have a lot of graphs, equations, etc., don't make more work for yourself than you need to. Do NOT email your notebook entries to your TA unless he or she specifically requests that you do so.

Notebook entries: Each complete entry should include:

  1. Date
  2. Brief statement of objectives for that session
  3. Record of what was done

The record will include equations, diagrams, and figures. These should be numbered for reference in the narrative portion of the book. Written entries and equations should appear on the right-hand page of each pair. Drawn figures, diagrams, and photocopies extracted from published sources should be placed on the left-hand side, which is graph-ruled. All separate documents should be permanently attached to the notebook. All hand-written entries must be made in pen.

Overall, the book should contain a record that is clear and complete, so that someone else can follow progress, understand problems, and understand decisions that were made in designing and executing the project.

What to include:

There is always something to record:

Suppose you are only "kicking around" design ideas for the project with someone, or scanning library sources. Your objective is what you're hoping to find. The record shows what you found or what you decided and why, even if it isn't final.

One of the most common errors is to fail to record these seemingly "unimportant" activities. Down the road, they may prove crucial in understanding when and where a particular idea came from.

Requirements and Grading

Lab notebooks will be graded according to the lab notebook evaluation sheet at the end of the semester.

Submission and Deadlines

Lab notebooks must be submitted at lab checkout on Reading Day. If you are unable to attend lab checkout, please make arrangements with your TA ahead of time.

Dynamic Legged Robot

Featured Project

We plan to create a dynamic robot with one to two legs stabilized in one or two dimensions in order to demonstrate jumping and forward/backward walking. This project will demonstrate the feasibility of inexpensive walking robots and provide the starting point for a novel quadrupedal robot. We will write a hybrid position-force task space controller for each leg. We will use a modified version of the ODrive open source motor controller to control the torque of the joints. The joints will be driven with high torque off-the-shelf brushless DC motors. We will use high precision magnetic encoders such as the AS5048A to read the angles of each joint. The inverse dynamics calculations and system controller will run on a TI F28335 processor.

We feel that this project appropriately brings together knowledge from our previous coursework as well as our extracurricular, research, and professional experiences. It allows each one of us to apply our strengths to an exciting and novel project. We plan to use the legs, software, and simulation that we develop in this class to create a fully functional quadruped in the future and release our work so that others can build off of our project. This project will be very time intensive but we are very passionate about this project and confident that we are up for the challenge.

While dynamically stable quadrupeds exist— Boston Dynamics’ Spot mini, Unitree’s Laikago, Ghost Robotics’ Vision, etc— all of these robots use custom motors and/or proprietary control algorithms which are not conducive to the increase of legged robotics development. With a well documented affordable quadruped platform we believe more engineers will be motivated and able to contribute to development of legged robotics.

More specifics detailed here:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30338