Lab Notebook

Video Lecture

Video, Slides

Description

Keeping a professional lab notebook is a requirement of the course. If maintained properly, lab notebooks serve as an official and legal record of the development of the intellectual property related to your project. It also serves as a way to document and track changes to your design, results of all tests performed, and the effort you have put into your project. A well-kept notebook will simplify writing of all required documentation for this course (design review, final paper, etc) as all of the information in those documents should already exist in your notebook. Finally, keeping a notebook is simply good engineering practice and likely will be required by future employers, so it is a good idea to get in the habit of maintaining one now.

The Book: Any notebook with permanent bindings designed for laboratory record keeping is acceptable. Those with pre-numbered pages are required. Ideally, it should have graph rulings on alternate pages, or else quarter-inch square grid on all pages. We will not accept normal spiral-bound notebooks, as these are not permissible in court since pages can be easily replaced. While most of you probably won't be taking your design to court, we want to teach you to get into the habit of keeping legally acceptable records. Some of you may decide you do want to patent your project, so it will be very beneficial to have given yourself the legal advantage from the start.

We will allow you to keep your notebook on a computer, but entries will still need to be printed out and attached to a physical notebook for weekly meetings. Keep in mind also that it may be easier in the long run to scratch out rough graphs and equations on paper, so try to plan ahead. If you know you'll have a lot of graphs, equations, etc., don't make more work for yourself than you need to. Do NOT email your notebook entries to your TA unless he or she specifically requests that you do so.

Notebook entries: Each complete entry should include:

  1. Date
  2. Brief statement of objectives for that session
  3. Record of what was done

The record will include equations, diagrams, and figures. These should be numbered for reference in the narrative portion of the book. Written entries and equations should appear on the right-hand page of each pair. Drawn figures, diagrams, and photocopies extracted from published sources should be placed on the left-hand side, which is graph-ruled. All separate documents should be permanently attached to the notebook. All hand-written entries must be made in pen.

Overall, the book should contain a record that is clear and complete, so that someone else can follow progress, understand problems, and understand decisions that were made in designing and executing the project.

What to include:

There is always something to record:

Suppose you are only "kicking around" design ideas for the project with someone, or scanning library sources. Your objective is what you're hoping to find. The record shows what you found or what you decided and why, even if it isn't final.

One of the most common errors is to fail to record these seemingly "unimportant" activities. Down the road, they may prove crucial in understanding when and where a particular idea came from.

Requirements and Grading

Lab notebooks will be graded according to the lab notebook evaluation sheet at the end of the semester.

Submission and Deadlines

Lab notebooks must be submitted at lab checkout on Reading Day. If you are unable to attend lab checkout, please make arrangements with your TA ahead of time.

Wireless Charging Table Supporting Multiple Devices with Arbitrary Placement

Kaiwen Cao, Tianyi Han, Tingkai Liu, Zikai Liu

Featured Project

# Wireless Charging Table Supporting Multiple Devices with Arbitrary Placement

# Problem

While more and more device manufacturers adopt wireless charging into their smartphones and headphones, most currently available wireless charging pads only support a single device and require strict alignment between the device and the coil. Misalignment can negatively influence both user experience and charging efficiency. In certain scenarios such as cafeterias, a table that can simultaneously charge multiple devices with arbitrary placement can be useful and COOL, allowing the users to sit wherever they like and to arbitrarily place their devices.

# Solution Overview

We intend to design and manufacture a table with multiple mobile coils placed in an intermediate layer below. Driven by step motors, a tool grabber attaches the coils using electromagnets and drop them in the right place. Computer vision will be used to recognize devices (phones, AirPods, etc.) and guide the chargers to corresponding locations. Once the coil is in place, it will first communicate with the device (Qi protocol) to verify whether the device can be charged wirelessly. If yes, the charging process will start. Otherwise, the coil will be moved back to its original location. The scheduling algorithm ensures the wires get separated and neat.

# Solution Components

* Mechanical subsystem. The main moving component of the system is a large-scale X-Y moving mechanism under the table. The coils will be placed between two panels above the moving mechanism and will be caught and dropped to the right place by the moving tool head. The tool head will be developed with electromagnets or magnets with Z-axis moving capability.

![sketch](https://courses.grainger.illinois.edu/ece445zjui/pace/getfile/18618)

* Vision detection subsystem. This includes a camera and a processing unit. It detects the locations of phones and other chargeable devices and send their positions to the control unit. In real-world settings, pre-installed surveillance cameras may be used as the video source so that no additional camera is required. Embedded GPU (NVIDIA Jetson Nano as a candidate) or cloud service can be used for image processing.

* Power supply control. It is used to control wireless chargers and supply power to devices if and only if the handshake between charger and device is successful. Status will be reported to the central control unit.

* Central control unit and embedded software. According to the output given by the vision detection system or the feedback from the power supply system, the central control unit should move the chargers with proper scheduling algorithm to pair chargers with devices and keep wires of coil separated and neat.

# Criterion for Success

* The vision detection system can localize chargeable device at an accuracy of over 80% and response within 2s.

* The power system can supply powers when a chargeable device is present, and not supply power when the misdetection happens. Correct feedback can be sent to the central control system.

* The mechanical system moves correctly according to the commands given by the central control system.

* The central control system can send correct commands to the mechanical system given the position information from the vision system and the feedback from the power supply system. It should be able to keep wires of charging coil separated.

# Evaluations on Alternative Solutions

The technology of wireless charging emerged some time ago, but its inclusion in commercial devices doesn’t take off until recent years. Intuitively, wireless charging doesn’t bring much additional convenience compared to the wired charging, but its adoption by major manufacturers has proven its value. Similarly, in certain settings such as the cafeteria, charging without alignment may significantly increase user experience, comparing to having only a few fixed charging locations.

An alternative solution to enable table-scale wireless charging is to deploy multiple coils covering the whole table. But it doesn’t solve the alignment problem unless the coils are heavily overlapped, which has been proven to be difficult by already canceled Apple AirPower.