Lab Notebook

Video Lecture

Video, Slides

Description

Keeping a professional lab notebook is a requirement of the course. If maintained properly, lab notebooks serve as an official and legal record of the development of the intellectual property related to your project. It also serves as a way to document and track changes to your design, results of all tests performed, and the effort you have put into your project. A well-kept notebook will simplify writing of all required documentation for this course (design review, final paper, etc) as all of the information in those documents should already exist in your notebook. Finally, keeping a notebook is simply good engineering practice and likely will be required by future employers, so it is a good idea to get in the habit of maintaining one now.

The Book: Any notebook with permanent bindings designed for laboratory record keeping is acceptable. Those with pre-numbered pages are required. Ideally, it should have graph rulings on alternate pages, or else quarter-inch square grid on all pages. We will not accept normal spiral-bound notebooks, as these are not permissible in court since pages can be easily replaced. While most of you probably won't be taking your design to court, we want to teach you to get into the habit of keeping legally acceptable records. Some of you may decide you do want to patent your project, so it will be very beneficial to have given yourself the legal advantage from the start.

We will allow you to keep your notebook on a computer, but entries will still need to be printed out and attached to a physical notebook for weekly meetings. Keep in mind also that it may be easier in the long run to scratch out rough graphs and equations on paper, so try to plan ahead. If you know you'll have a lot of graphs, equations, etc., don't make more work for yourself than you need to. Do NOT email your notebook entries to your TA unless he or she specifically requests that you do so.

Notebook entries: Each complete entry should include:

  1. Date
  2. Brief statement of objectives for that session
  3. Record of what was done

The record will include equations, diagrams, and figures. These should be numbered for reference in the narrative portion of the book. Written entries and equations should appear on the right-hand page of each pair. Drawn figures, diagrams, and photocopies extracted from published sources should be placed on the left-hand side, which is graph-ruled. All separate documents should be permanently attached to the notebook. All hand-written entries must be made in pen.

Overall, the book should contain a record that is clear and complete, so that someone else can follow progress, understand problems, and understand decisions that were made in designing and executing the project.

What to include:

There is always something to record:

Suppose you are only "kicking around" design ideas for the project with someone, or scanning library sources. Your objective is what you're hoping to find. The record shows what you found or what you decided and why, even if it isn't final.

One of the most common errors is to fail to record these seemingly "unimportant" activities. Down the road, they may prove crucial in understanding when and where a particular idea came from.

Requirements and Grading

Lab notebooks will be graded according to the lab notebook evaluation sheet at the end of the semester.

Submission and Deadlines

Lab notebooks must be submitted at lab checkout on Reading Day. If you are unable to attend lab checkout, please make arrangements with your TA ahead of time.

Robotic T-Shirt Launcher Mark II

Hao Ding, Moyang Guo, Yixiang Guo, Ziyu Xiao

Featured Project

ROBOTIC T-SHIRT LAUNCHER MARK II

TEAM MEMBERS

Guo yixiang (yg16),

Guo moyang (moyangg2),

Xiao ziyu (ziyux2),

Ding hao (haod3)

PROBLEM

Our team has identified a problem with the launcher project that was completed last year. In particular, the previous design only included a single-shot launcher that required manual reloading and could only adjust the angle and direction automatically.

SOLUTION OVERVIEW

To address this issue, our team has proposed an improved design that will improve upon the limitations of the previous model. The Robotic T-shirt Launcher Mark II will be a fully automated system capable of launching multiple T-shirts by itself, without manual reloading. Our proposed design will also include more advanced features, such as the ability to adjust the trajectory of the launch. In addition, we will build it into a wearable device that could be carried on our shoulders.

SOLUTION COMPONENTS

The automatic launcher is comprised of several components that work together to provide a powerful and reliable weapon system. These components include:

Power Components: The power components of the system consist of an air pump, an air cylinder, a quick exhaust valve, and connecting elements. These components are responsible for providing the necessary power and pressure to the system to shoot out the bullet.

Function Components: The functional components of the system include the barrel, the two-axis gimbal (which is wearable), and the automatic loading system. The barrel provides the means for firing projectiles, while the gimbal allows for precise targeting and tracking of moving targets.

Control System: The control system is responsible for managing the various components of the system, including the electromagnetic valves that control the airflow, the actuator controllers for the loading mechanism, and the gimbal controller for targeting.

Human-Machine Interface (Advanced Requirement): For advanced users, the system could include a human-machine interface with features such as automatic firing, angle adjustment, and target recognition lock-on, allowing the user to engage targets effectively.

CRITERIA FOR SUCCESS:

Functionality: The launcher should be able to launch T-shirts accurately and consistently at a controlled angle and velocity. The system should be able to handle multiple T-shirts without the need for manual reloading, and the entire launch process and angle control should be initiated and controlled by a single button.

Airtight and Adequate Air Pressure: The launcher's air channel should have high airtightness and be able to generate sufficient air pressure to launch T-shirts effectively. The air pressure should be able to be adjusted and controlled to suit different launch scenarios.

Automation: The loading system should be fully automated, with T-shirts being automatically loaded into the air chamber without the need for manual intervention. The loading mechanism should be designed to be reliable and efficient, and the electrical control system should be able to manage the entire process automatically.

Safety and Cost-effectiveness: The launcher should be designed with safety in mind. Safety mechanisms, such as emergency stop buttons, should be included to prevent accidents or injuries. The design and construction of the launcher should be cost-effective, and any additional features should be carefully considered. Also, it is necessary to implement additional components to measure some critical values such as gas tightness in order to prevent gas leaks.