Final Demo

Description

The Final Demonstration (Final Demo) is the single, most important assignment in the course. It is the strongest measure of the success of your project. The evaluation focuses on the criteria of project completion, reliability, and professionalism. You will demo your full project to a group consisting of your Professor, your TA, and a few peer reviewers. Other guests (e.g. alumni, other course staff, visiting scholars, donors) may sometimes also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project to the instructors. If full functionality is not available, then students must be able to show the parts of the project that do function via the procedure listed in their Requirements and Verification Table. Credit will not be given for features which cannot be demonstrated, even if those features worked before and suddenly fail at the time of the final demo. Still, for any portion of the project which does not function as specified, students should have hypotheses and supporting evidence for what the problem may be.

The project team should be ready to justify design decisions and technical aspects of any part of the project (not just your own parts). Quantitative results are expected wherever applicable.

Grading is covered by the Demo Rubric, and is out of 150 points. Some of the key points are as follows:

  1. Completion: The project has been entirely completed.
  2. Thoroughness: Care and attention to detail are evident in construction and layout.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.

Submission and Deadlines

Sign-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review session as well.

Seat U: Sensing System for Real-time Library Seat Occupation Detection

Jiayuan Huang, Hangzheng Lin, Jiaqi Lou, Hanyin Shao

Featured Project

# Problem

During the exam week, it is very difficult to find a seat in the library. Sometimes students cannot find a satisfying seat even if they walk through the library all around. Some students complain about unknown traffic in the library. For more convenient library seats seeking, students would like to know which other seats are empty ahead of time in order to decide whether they will go to the library and where to find available seats.

# Solution Overview

We will design a sensor-based device for each table to detect occupancy. The occupancy data will be uploaded through wifi to the cloud. There will be three states for each seat: occupied by people, occupied by items, or unoccupied. Then we will design an APP to visualize these data.

# Components

## The sensing subsystem:

• Data preprocessing and WiFi module to transfer data (ESP32)

• Multi-kinds of sensors to detect objects and collect data

• Wired power supply to support long-term real-time detection

## Human-computer interaction subsystem:

• Database server to store the collected data

• APP on the phone that allows clients to check the status of library seats

• It can indicate whether the seat is occupied with people (reserved by personal items), occupied without people, or available

# Criteria of Success

• Classify three different states of seats (occupied by people, occupied by items, or unoccupied)

• The accuracy of detecting whether a seat is reserved by items is above 90%

• The accuracy of detecting whether a seat is occupied by people is above 95%

• The sensor-based device APP is user-friendly and accurately visualizes the seat occupation

• The states of the seats get updated every 1 minute in the APP

• Adaptive to different kinds of table in the library (flexibility)

• Implement the database server bidirectionally: upload data from the device and download data to the APP