Final Demo

Description

The Final Demonstration (Final Demo) is the single, most important assignment in the course. It is the strongest measure of the success of your project. The evaluation focuses on the criteria of project completion, reliability, and professionalism. You will demo your full project to a group consisting of your Professor, your TA, and a few peer reviewers. Other guests (e.g. alumni, other course staff, visiting scholars, donors) may sometimes also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project to the instructors. If full functionality is not available, then students must be able to show the parts of the project that do function via the procedure listed in their Requirements and Verification Table. Credit will not be given for features which cannot be demonstrated, even if those features worked before and suddenly fail at the time of the final demo. Still, for any portion of the project which does not function as specified, students should have hypotheses and supporting evidence for what the problem may be.

The project team should be ready to justify design decisions and technical aspects of any part of the project (not just your own parts). Quantitative results are expected wherever applicable.

Grading is covered by the Demo Rubric, and is out of 150 points. Some of the key points are as follows:

  1. Completion: The project has been entirely completed.
  2. Thoroughness: Care and attention to detail are evident in construction and layout.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.

Submission and Deadlines

Sign-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review session as well.

Dynamic Legged Robot

Featured Project

We plan to create a dynamic robot with one to two legs stabilized in one or two dimensions in order to demonstrate jumping and forward/backward walking. This project will demonstrate the feasibility of inexpensive walking robots and provide the starting point for a novel quadrupedal robot. We will write a hybrid position-force task space controller for each leg. We will use a modified version of the ODrive open source motor controller to control the torque of the joints. The joints will be driven with high torque off-the-shelf brushless DC motors. We will use high precision magnetic encoders such as the AS5048A to read the angles of each joint. The inverse dynamics calculations and system controller will run on a TI F28335 processor.

We feel that this project appropriately brings together knowledge from our previous coursework as well as our extracurricular, research, and professional experiences. It allows each one of us to apply our strengths to an exciting and novel project. We plan to use the legs, software, and simulation that we develop in this class to create a fully functional quadruped in the future and release our work so that others can build off of our project. This project will be very time intensive but we are very passionate about this project and confident that we are up for the challenge.

While dynamically stable quadrupeds exist— Boston Dynamics’ Spot mini, Unitree’s Laikago, Ghost Robotics’ Vision, etc— all of these robots use custom motors and/or proprietary control algorithms which are not conducive to the increase of legged robotics development. With a well documented affordable quadruped platform we believe more engineers will be motivated and able to contribute to development of legged robotics.

More specifics detailed here:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30338