Final Demo

Description

The Final Demonstration (Final Demo) is the single, most important assignment in the course. It is the strongest measure of the success of your project. The evaluation focuses on the criteria of project completion, reliability, and professionalism. You will demo your full project to a group consisting of your Professor, your TA, and a few peer reviewers. Other guests (e.g. alumni, other course staff, visiting scholars, donors) may sometimes also be present.

Requirements and Grading

Students must be able to demonstrate the full functionality of their project to the instructors. If full functionality is not available, then students must be able to show the parts of the project that do function via the procedure listed in their Requirements and Verification Table. Credit will not be given for features which cannot be demonstrated, even if those features worked before and suddenly fail at the time of the final demo. Still, for any portion of the project which does not function as specified, students should have hypotheses and supporting evidence for what the problem may be.

The project team should be ready to justify design decisions and technical aspects of any part of the project (not just your own parts). Quantitative results are expected wherever applicable.

Grading is covered by the Demo Rubric, and is out of 150 points. Some of the key points are as follows:

  1. Completion: The project has been entirely completed.
  2. Thoroughness: Care and attention to detail are evident in construction and layout.
  3. Performance: Performance is completely verified, and operation is reliable.
  4. Understanding: Everyone on the project team must be able to demonstrate understanding of his/her technical work and show that all members have contributed significantly.

Submission and Deadlines

Sign-up for a demo time is handled through the PACE system. Again, remember to sign up for a peer review session as well.

Electronic Automatic Transmission for Bicycle

Featured Project

Tianqi Liu(tliu51)

Ruijie Qi(rqi2)

Xingkai Zhou(xzhou40)

Sometimes bikers might not which gear is the optimal one to select. Bicycle changes gears by pulling or releasing a steel cable mechanically. We could potentially automate gear changing by hooking up a servo motor to the gear cable. We could calculate the optimal gear under current condition by using several sensors: two hall effect sensors, one sensing cadence from the paddle and the other one sensing the overall speed from the wheel, we could also use pressure sensors on the paddle to determine how hard the biker is paddling. With these sensors, it would be sufficient enough for use detect different terrains since the biker tend to go slower and pedal slower for uphill or go faster and pedal faster for downhill. With all these information from the sensors, we could definitely find out the optimal gear electronically. We plan to take care of the shifting of rear derailleur, if we have more time we may consider modifying the front as well.

Besides shifting automatically, we plan to add a manual mode to our project as well. With manual mode activated, the rider could override the automatic system and select the gear on its own.

We found out another group did electronic bicycle shifting in Spring 2016, but they didn't have a automatic function and didn't have the sensor set-up like ours. Commercially, both SRAM and SHIMANO have electronic shifting products, but these products integrate the servo motor inside the derailleurs, and they have a price tag over $1000. Only professionals or rich enthusiasts can have a hand on them. As our system could potentially serve as an add-on device to all bicycles with gears, it would be much cheaper.