Soldering Assignment

Description

The soldering assignment is a basic soldering exercise that ensures all ECE 445/ME 470 students understand how to solder surface-mount and through-hole devices. Students will be provided with the necessary PCB, components, solder, flux, etc. The details of the soldering assignment can be found in the assignment sheet.

Your end product should look similar to the following. You will create a small device that blinks an LED at varying frequencies when the button is pressed, based on a potentiometer reading.

Soldering Assignment Image

Below is a series of soldering tutorials. The critical ingredient that you need to make your life easier while surface mount soldering (and through-hole too) is flux. There is liquid, water-soluble flux available in the lab. If you can't find it or don't know what it looks like, ask a lab staff member or TA for help.

Requirements and Grading

The soldering assignment is worth 10 points and is graded via inspection by a TA or Lab Staff member. Students are allowed to make as many attempts as necessary to complete the assignment.

Submission and Deadlines

The soldered PCB must be presented to a course staff member before the deadline listed on the Course Calendar.

Video Tutorials

Below are a few public video tutorials on Soldering. There is also a text description of how to solder on the soldering assignment doc linked above.

Through-hole (THT) and surface-mount (SMD) soldering tutorial:

Tutorial on using the various types of flux:

Tutorial on using wick to remove solder:

Tutorial on using a heat gun:

Remote Driving System

Bo Pang, Jiahao Wei, Kangyu Zhu

Featured Project

#### TEAM MEMBERS

Jiahao Wei (jiahaow4)

Bo Pang (bopang5)

Kangyu Zhu (Kangyuz2)

## REMOTE DRIVING SYSTEM

#### PROBLEM:

In daily life, people might not be able to drive due to factors like fatigue and alcohol. In this case, remote chauffeur can act as the driver to make the driving safe and reduce the incidence of traffic accidents. Remote chauffeuring can improve the convenience of driving. In the case of urban traffic congestion and parking difficulties, remote chauffeurs allow drivers to park their vehicles in parking lots away from the city center and then deliver them to their destination via remote control.

#### SOLUTION OVERVIEW:

The remote driving system is designed to provide real-time feedback of the car's external environment and internal movement information to the remote chauffeurs. Through the use of advanced technologies, the remote chauffeurs can remotely operate the car's movement using various devices. This system is capable of monitoring the car's speed, distance from obstacles, and battery life, and transmitting this information to the remote chauffeurs in a clear and easy-to-understand format.

#### SOLUTION COMPONENTS:

##### Modules on TurtleBot3 :

- The mechanical control system: to achieve the basic motion functions of the TurtleBot3 car.

- The distance sensing system used for monitoring the surrounding environment: Using LiDAR to detect the distance of the car in different directions.

- The system used for monitoring the vehicle's status: real-time monitoring the car's battery power, speed, etc., and uploading the data to the PC server in real-time.

##### Server Modules:

- The transmission system used to remotely control the car: implemented using Arduino IDE.

- The system used to build an AR-based information interaction system: implemented using Unity.

- The system used to output specific car motion commands: implemented using ROS to control the car.

##### HRI modules:

- The gesture recognition system used to recognize gestures given by people and feed back to the central PC server.

- The device used for interaction between the car and people: transmitting real-time surrounding information of the car to the Hololens 2 glasses in video form.

#### CRITERION FOR SUCCESS:

- Functionality: The remote driving system needs to be able to facilitate interaction between the user and the vehicle, enabling the user to remotely control the vehicle's steering, acceleration, and deceleration functions.

- User experience: The user can obtain real-time information about the surrounding environment while driving the vehicle through the glasses, and control the vehicle's movement through gestures.

- Environmental parameter detection: The vehicle can obtain distance information about the environment and its own real-time information.

- Durability and stability: The server needs to maintain a stable connection between the vehicle and the user.

#### DISTRIBUTION OF WORK:

- ECE STUDENT PANG BO:

Implementing the ROS interaction with the PC, using the ROS platform to control the car's speed and direction.

- ECE STUDENT WEI JIAHAO:

Building the car, implementing environmental monitoring and video transmission, ensuring stable transmission of environmental information to the user.

Implementing speed measurement, obstacle distance detection, and battery level monitoring for the car.

- EE STUDENT ZHU KANGYU:

Designing the AR interaction, issuing AR information prompts when the car is overspeeding or approaching obstacles.

Implementing hand gesture recognition for interaction between hololens2 and PC.