Design Document

Video Lecture

Video, Slides

Description

The design document communicates the complete and detailed design of your project. It is substantially more detailed than the proposal and prepares you for the assembly phase of the semester. A quality design document is the key to a successful project. Use the following format.

  1. Introduction

    • Problem and Solution Overview:

      One to two paragraphs explaining the context of the problem to be solved by your project, including any relevant references to justify the existence and/or importance of the problem (i.e., the need or want for a solution). Justify the novelty of your solution or explain the expected improvements of your solution over previous results.

    • Visual Aid

      A pictorial representation of your project that puts your solution in context. Not necessarily restricted to your design. Include other external systems relevant to your project (e.g. if your solution connects to a phone via Bluetooth, draw a dotted line between your device and the phone). Note that this is not a block diagram and should explain how the solution is used, not a breakdown of inner components.

    • High-level requirements list:

      A list of three to four objective characteristics that this project must exhibit in order to solve the problem. These should be selected such that if any of these requirements were not met, the project would fail to solve the problem. Avoid vague requirements that can be interpreted a number of ways (e.g. "The radio subsystem should work reliably."). Each high-level requirement must be stated in complete sentences and displayed as a bulleted list.

  2. Design

    • Block Diagram:

      A general block diagram of the design of your solution. Each block should be as modular as possible and represent a subsystem of your design. In other words, they can be implemented independently and re-assembled later. The block diagram should be accompanied by a brief (1 paragraph) description of the high level design justifying that the design will satisfy the high-level requirements.

    • Physical Design (if applicable):

      A physical diagram of the project indicating things such as mechanical dimensions or placement of sensors and actuators. The physical diagram should also be accompanied by a brief one paragraph description.

    • [SUBSYSTEM NAME]

      For each subsystem in your block diagram, you should include a highly detailed and quantitative block description. Each description must include a statement indicating how the block contributes to the overall design dictated by the high-level requirements. Any and all design decisions must be clearly justified. Any interfaces with other blocks must be defined clearly and quantitatively.

      Include any relevant supporting figures and data in order to clearly illustrate and justify the design. Typically a well justified block design will include some or all of the following items: Circuit schematics, simulations, calculations, measurements, flow charts, mechanical diagrams (e.g. CAD drawings, only necessary for mechanical components).

      You must include a Requirements and Verifications table. Please see the R&V page for guidance on writing requirements and verification procedures.

    • Tolerance Analysis: Through discussions with your TA, identify the block or interface critical to the success of your project that poses the most challenging requirement. Analyze it mathematically and show that it can be feasibly implemented and meet its requirements. See the Tolerance Analysis guide for further guidance.
  3. Cost and Schedule

    1. Cost Analysis: Include a cost analysis of the project by following the outline below. Include a list of any non-standard parts, lab equipment, shop services, etc., which will be needed with an estimated cost for each.
      • Labor: (For each partner in the project)
        Assume a reasonable salary
        ($/hour) x 2.5 x hours to complete = TOTAL
        Then total labor for all partners. It's a good idea to do some research into what a graduate from ECE at Illinois might typically make.
      • Parts: Include a table listing all parts (description, manufacturer, part #, quantity and cost) and quoted machine shop labor hours that will be needed to complete the project.
      • Sum of costs into a grand total
    2. Schedule:

      Include a time-table showing when each step in the expected sequence of design and construction work will be completed (general, by week), and how the tasks will be shared between the team members. (i.e. Select architecture, Design this, Design that, Buy parts, Assemble this, Assemble that, Prepare mock-up, Integrate prototype, Refine prototype, Test integrated system).

  4. Discussion of Ethics and Safety:

    1. Expand upon the ethical and safety issues raised in your proposal to ensure they are comprehensive. Add any ethical and safety concerns that arose since your proposal.
    2. Document procedures to mitigate the safety concerns of your project. For example, include a lab safety document for batteries, human/animal interfaces, aerial devices, high-power, chemicals, etc. Justify that your design decisions sufficiently protect both users and developers from unsafe conditions caused by your project.
      Projects dealing with flying vehicles, high voltage, or other high risk factors, will be required to produce a Safety Manual and demonstrate compliance with the safety manual at the time of demo.
  5. Citations:

    Any material obtained from websites, books, journal articles, or other sources not originally generated by the project team for this project must be appropriately attributed with properly cited sources. This means that even work the project team has done previously, as long as it was not done for this project, must be cited. Use IEEE format citations.

Grading

An example is available available to illustrate the expectations for a high quality Design Document: Sample DD.

Submission and Deadlines

Your design review document should be uploaded to PACE in PDF format by the deadline shown on the course calendar. If you have uploaded a DDC document to PACE, please make sure that it has been removed before uploading your Design Document.

3D Scanner

Peiyuan Liu, Jiayi Luo, Yifei Song, Chenchen Yu

Featured Project

# Team Members

Yifei Song (yifeis7)

Peiyuan Liu (peiyuan6)

Jiayi Luo (jiayi13)

Chenchen Yu (cy32)

# 3D Scanner

# Problem

Our problem is how to design an algorithm that uses a mobile phone to take multiple angle photos and generate 3D models from multiple 2D images taken at various positions. At the same time, we will design a mechanical rotating device that allows the mobile phone to rotate 360 degrees and move up and down on the bracket.

# Solution Overview

Our solution for reconstructing a 3D topology of an object is to build a mechanical rotating device and develop an image processing algorithm. The mechanical rotating device contains a reliable holder that can steadily hold a phone of a regular size, and an electrical motor, which is fixed in the center of the whole system and can rotate the holder 360 degrees at a constant angular velocity.

# Solution Components

## Image processing algorithms

- This algorithm should be capable of performing feature detection which is essential for image processing. It should be able to accurately identify and extract relevant features of an object from multiple 2D images, including edges, corners, and key points.

- This algorithm should be designed to minimize the memory requirement and energy consumption, because mobile phones have limited memory and battery.

## Mechanical rotating system

Phone holder that can adjust its size and orientation to hold a phone steadily

Base of the holder with wheels that allows the holder to move smoothly on a surface

Electrical motor for rotating the holder at a constant angular velocity

Central platform to place the object

The remote-control device can be used to control the position of the central platform. Different types of motors and mechanisms can be used for up and down, such as the stepper motors, servo motors, DC motors, and AC motors.

# Criterion for Success

- Accuracy: The app should be able to produce a 3D model that is as accurate as possible to the real object, with minimal distortion, errors or noise.

- Speed: The app should be able to capture and process the 3D data quickly, without requiring too much time or processing power from the user's device.

- Output quality: The app should be able to produce high-quality 3D models that can be easily exported and used in other software applications or workflows.

- Compatibility: Any regular phone can be placed and fixed on the phone holder with a certain angle and does not come loose

- Flexibility: The holder with a phone must be able to rotate 360 degrees smoothly without violent tremble at a constant angular velocity

# Distribution of Work

Yifei Song

Design a mobile app and deploy a modeling algorithm to it that enables image acquisition and 3D modeling output on mobile devices.

Peiyuan Liu:

Design an algorithm for modeling 3D models from multiple view 2D images.

Jiayi Luo:

Design the remote-control device. Using the electrical motors to control the central platform of the mechanical rotating system.

Chenchen Yu:

Design the mechanical part. Build, test and improve the mechanical rotating system to make sure the whole device works together.