Individual Progress Report

Description

The Individual Progress Report (IPR) is a chance to put your contributions to the team's progress in writing. The report will discuss not only the components and subsystems you have personally been responsible for, but what components you have helped work on as well. It is important to talk about the relation between your work and your teammates' work as well.

Importantly, we want to see what you have worked on, what works and doesn't, and how you are planning on overcoming your challenges.

Requirements and Grading

This report should be 5-12 pages of your own work. This means that you cannot take full paragraphs or sections from your Design Document, since that was a collaborative effort. The IPR Grading Rubric describes what we look for in grading this assignment. The requirements are expanded on below:

  1. General: Concise writing is encouraged, but it is important that all pertinent information is conveyed. All figures should be labeled and formatted consistently.
  2. Formatting: Please refer to the Final Report Guidelines for general writing guidelines, since the format of this report should be very similar to that of the final report. Note that each component of the Final Report may be tailored to the parts of the project the individual has been active in.
  3. Introduction: First, discuss what portion of the system you have been active in designing connects to which portion of a different subsystem, and how these interact to complete an overall objective. Then discuss what you have accomplished, what you are currently working on, and what you still have left to do.
  4. Design: Discuss the design work you have done so far. It is expected that you have done calculations and/or found relevant equations, created circuits for your parts of the project, and simulated / drawn schematics for your parts. You may have already, at a high level, discussed how your part fits into the rest of the project, but you should expand on the technical details and interface between your module(s) and the other modules of the project.
  5. Verification: Testing and verification is also very important. Make sure you describe each test that was performed and its procedure in detail, and give quantitative, meaningful results. Also describe tests that have yet to be performed. We should be convinced that if all your tests will pass, your part of the project will work.
  6. Conclusion: Discuss a plan and timeline for completing your responsibilities and your project as a whole. Also explain the ethical considerations of your project by consulting the IEEE Code of Ethics, ACM Code of Ethics, or another relevant Code of Ethics.
  7. Citations: You need citations. Cite sources for equations, Application Notes you referenced in your design, and any literature you used to help design or verify your work. If you checked something from another course's lecture slides, Google'd for things related to your project, or anything similar, then you have something you need to cite. At the very least, since you have talked about the ethical considerations of your project as it relates to a published code of ethics (e.g., IEEE or ACM), you should cite those!

Submission and Deadlines

The IPR should be submitted on Blackboard in PDF format by the deadline listed on the Course Calendar.

Augmented Reality and Virtual Reality for Electromagnetics Education

Zhanyu Feng, Zhewen Fu, Han Hua, Daosen Sun

Featured Project

# PROBLEM

Many students found electromagnetics a difficult subject to master partly because electromagnetic waves are difficult to visualize directly using our own eyes. Thus, it becomes a mathematical abstract that heavily relies upon mathematical formulations.

# SOLUTION OVERVIEW

We focus on using AR/VR technology for large-scale, complex, and interactive visualization for the electromagnetic waves. To speed up the calculation, we are going to compute the field responses and render the fields out in real-time probably accelerated by GPU computing, cluster computation, and other more advanced numerical algorithms. Besides, we propose to perform public, immersive, and interactive education to users. We plan to use the existing VR equipment, VR square at laboratory building D220 to present users with a wide range of field of view, high-resolution, and high-quality 3D stereoscopic images, making the virtual environment perfectly comparable to the real world. Users can work together and interact with each other while maneuvering the virtual objects. This project also set up the basis for us to develop digital-twins technology for electromagnetics that effectively links the real world with digital space.

# COMPONENTS

1.Numerical computation component: The part that responsible for computing the field lines via Maxwell equations. We will try to load the work on the GPU to get better performance.

2.Graphic rendering component: The part will receive data from the numerical computation component and use renderers to visualize the data.

3.User interface component: This part can process users’ actions and allow the users to interact with objects in the virtual world.

4.Audio component: This part will generate audio based on the electromagnetic fields on charged objects.

5.Haptic component: This part will interact with the controller to send vibration feedback to users based on the field strength.

# CRITERIA OF SUCCESS

Set up four distinct experiments to illustrate the concept of four Maxwell equations. Students can work together and use controllers to set up different types of charged objects and operate the orientation/position of them. Students can see both static and real-time electromagnetic fields around charged objects via VR devices. Achieve high frame rates in the virtual world and fasten the process of computation and using advanced algorithms to get smooth electromagnetic fields.

# WHAT MAKES OUR PROJECT UNIQUE

We will build four distinct scenarios based on four Maxwell Equations rather than the one Gaussian’s Law made by UIUC team. In these scenarios, we will render both electric and magnetic field lines around charged objects, as well as the forces between them.

The experiments allow users to interact with objects simultaneously. In other words, users can cooperate with each other while conducting experiments. While the lab scene made by UIUC team only allows one user to do the experiment alone, we offer the chance to make the experiment public and allow multiple users to engage in the experiments.

We will use different hardware to do the computation. Rather than based on CPU, we will parallelize the calculation and using GPU to improve the performance and simulate large-scale visualization for the fields to meet the multi-users needs.

Compared to the project in the UIUC, we will not only try to visualize the fields, but also expand the dimension that we can perceive the phenomena i.e., adding haptic feedback in the game and also using audio feedback to give users 4D experience.