Individual Progress Report

Description

The Individual Progress Report (IPR) is a chance to put your contributions to the team's progress in writing. The report will discuss not only the components and subsystems you have personally been responsible for, but what components you have helped work on as well. It is important to talk about the relation between your work and your teammates' work as well.

Importantly, we want to see what you have worked on, what works and doesn't, and how you are planning on overcoming your challenges.

Requirements and Grading

This report should be 5-12 pages of your own work. This means that you cannot take full paragraphs or sections from your Design Document, since that was a collaborative effort. The IPR Grading Rubric describes what we look for in grading this assignment. The requirements are expanded on below:

  1. General: Concise writing is encouraged, but it is important that all pertinent information is conveyed. All figures should be labeled and formatted consistently.
  2. Formatting: Please refer to the Final Report Guidelines for general writing guidelines, since the format of this report should be very similar to that of the final report. Note that each component of the Final Report may be tailored to the parts of the project the individual has been active in.
  3. Introduction: First, discuss what portion of the system you have been active in designing connects to which portion of a different subsystem, and how these interact to complete an overall objective. Then discuss what you have accomplished, what you are currently working on, and what you still have left to do.
  4. Design: Discuss the design work you have done so far. It is expected that you have done calculations and/or found relevant equations, created circuits for your parts of the project, and simulated / drawn schematics for your parts. You may have already, at a high level, discussed how your part fits into the rest of the project, but you should expand on the technical details and interface between your module(s) and the other modules of the project.
  5. Verification: Testing and verification is also very important. Make sure you describe each test that was performed and its procedure in detail, and give quantitative, meaningful results. Also describe tests that have yet to be performed. We should be convinced that if all your tests will pass, your part of the project will work.
  6. Conclusion: Discuss a plan and timeline for completing your responsibilities and your project as a whole. Also explain the ethical considerations of your project by consulting the IEEE Code of Ethics, ACM Code of Ethics, or another relevant Code of Ethics.
  7. Citations: You need citations. Cite sources for equations, Application Notes you referenced in your design, and any literature you used to help design or verify your work. If you checked something from another course's lecture slides, Google'd for things related to your project, or anything similar, then you have something you need to cite. At the very least, since you have talked about the ethical considerations of your project as it relates to a published code of ethics (e.g., IEEE or ACM), you should cite those!

Submission and Deadlines

The IPR should be submitted on Blackboard in PDF format by the deadline listed on the Course Calendar.

Robotic T-Shirt Launcher Mark II

Hao Ding, Moyang Guo, Yixiang Guo, Ziyu Xiao

Featured Project

ROBOTIC T-SHIRT LAUNCHER MARK II

TEAM MEMBERS

Guo yixiang (yg16),

Guo moyang (moyangg2),

Xiao ziyu (ziyux2),

Ding hao (haod3)

PROBLEM

Our team has identified a problem with the launcher project that was completed last year. In particular, the previous design only included a single-shot launcher that required manual reloading and could only adjust the angle and direction automatically.

SOLUTION OVERVIEW

To address this issue, our team has proposed an improved design that will improve upon the limitations of the previous model. The Robotic T-shirt Launcher Mark II will be a fully automated system capable of launching multiple T-shirts by itself, without manual reloading. Our proposed design will also include more advanced features, such as the ability to adjust the trajectory of the launch. In addition, we will build it into a wearable device that could be carried on our shoulders.

SOLUTION COMPONENTS

The automatic launcher is comprised of several components that work together to provide a powerful and reliable weapon system. These components include:

Power Components: The power components of the system consist of an air pump, an air cylinder, a quick exhaust valve, and connecting elements. These components are responsible for providing the necessary power and pressure to the system to shoot out the bullet.

Function Components: The functional components of the system include the barrel, the two-axis gimbal (which is wearable), and the automatic loading system. The barrel provides the means for firing projectiles, while the gimbal allows for precise targeting and tracking of moving targets.

Control System: The control system is responsible for managing the various components of the system, including the electromagnetic valves that control the airflow, the actuator controllers for the loading mechanism, and the gimbal controller for targeting.

Human-Machine Interface (Advanced Requirement): For advanced users, the system could include a human-machine interface with features such as automatic firing, angle adjustment, and target recognition lock-on, allowing the user to engage targets effectively.

CRITERIA FOR SUCCESS:

Functionality: The launcher should be able to launch T-shirts accurately and consistently at a controlled angle and velocity. The system should be able to handle multiple T-shirts without the need for manual reloading, and the entire launch process and angle control should be initiated and controlled by a single button.

Airtight and Adequate Air Pressure: The launcher's air channel should have high airtightness and be able to generate sufficient air pressure to launch T-shirts effectively. The air pressure should be able to be adjusted and controlled to suit different launch scenarios.

Automation: The loading system should be fully automated, with T-shirts being automatically loaded into the air chamber without the need for manual intervention. The loading mechanism should be designed to be reliable and efficient, and the electrical control system should be able to manage the entire process automatically.

Safety and Cost-effectiveness: The launcher should be designed with safety in mind. Safety mechanisms, such as emergency stop buttons, should be included to prevent accidents or injuries. The design and construction of the launcher should be cost-effective, and any additional features should be carefully considered. Also, it is necessary to implement additional components to measure some critical values such as gas tightness in order to prevent gas leaks.