Individual Progress Report

Description

The Individual Progress Report (IPR) is a chance to put your contributions to the team's progress in writing. The report will discuss not only the components and subsystems you have personally been responsible for, but what components you have helped work on as well. It is important to talk about the relation between your work and your teammates' work as well.

Importantly, we want to see what you have worked on, what works and doesn't, and how you are planning on overcoming your challenges.

Requirements and Grading

This report should be 5-12 pages of your own work. This means that you cannot take full paragraphs or sections from your Design Document, since that was a collaborative effort. The IPR Grading Rubric describes what we look for in grading this assignment. The requirements are expanded on below:

  1. General: Concise writing is encouraged, but it is important that all pertinent information is conveyed. All figures should be labeled and formatted consistently.
  2. Formatting: Please refer to the Final Report Guidelines for general writing guidelines, since the format of this report should be very similar to that of the final report. Note that each component of the Final Report may be tailored to the parts of the project the individual has been active in.
  3. Introduction: First, discuss what portion of the system you have been active in designing connects to which portion of a different subsystem, and how these interact to complete an overall objective. Then discuss what you have accomplished, what you are currently working on, and what you still have left to do.
  4. Design: Discuss the design work you have done so far. It is expected that you have done calculations and/or found relevant equations, created circuits for your parts of the project, and simulated / drawn schematics for your parts. You may have already, at a high level, discussed how your part fits into the rest of the project, but you should expand on the technical details and interface between your module(s) and the other modules of the project.
  5. Verification: Testing and verification is also very important. Make sure you describe each test that was performed and its procedure in detail, and give quantitative, meaningful results. Also describe tests that have yet to be performed. We should be convinced that if all your tests will pass, your part of the project will work.
  6. Conclusion: Discuss a plan and timeline for completing your responsibilities and your project as a whole. Also explain the ethical considerations of your project by consulting the IEEE Code of Ethics, ACM Code of Ethics, or another relevant Code of Ethics.
  7. Citations: You need citations. Cite sources for equations, Application Notes you referenced in your design, and any literature you used to help design or verify your work. If you checked something from another course's lecture slides, Google'd for things related to your project, or anything similar, then you have something you need to cite. At the very least, since you have talked about the ethical considerations of your project as it relates to a published code of ethics (e.g., IEEE or ACM), you should cite those!

Submission and Deadlines

The IPR should be submitted on Blackboard in PDF format by the deadline listed on the Course Calendar.

A crowd-sourcing urban air quality monitoring system with bikes

Kaiwen Hong, Zhengxin Jiang, Haofan Lu, Haoqiang Zhu

Featured Project

**Problem**

For public bike users, someone may concern about the air quality in which they are currently riding, as well as the places they are going to. However, currently there is no such an air quality monitoring system which provides air quality information in specific areas inside a city such as Haining.

**Solution Overview**

The idea is to apply air quality monitoring devices on the public bike system. The public bike system in Haining is a perfect carrier for IoT (Internet of Things) devices and urban sensing since it has a large and stable user group and all bikes are managed by official organization which means unified modification on all bikes can be done. A monitoring device integrated on the bike can provide the real-time information that users want to know and share data with other users through a cloud server. A real-time air quality map can be created for users with the contribution from all running bikes.

**Solution Components**

Subsystem 1 – on-bike air quality monitoring device. The subsystem is a stm32 microcontroller based design, integrated with air contaminant sensor, speed meter and data transmission modules. Once connected to a smartphone, the subsystem will keep transmitting real-time data to the smartphone.

Subsystem 2 – Software include a user interface and a server. The user interface can be either an app or a website on smartphone. The user interface receives sensor data from the hardware subsystem, displays the real-time statistics, uploads sensor data to server and receives the air quality map from server. The server processes data from all running bikes, creates a real-time air quality map and returns it back to users.

**Criterion for Success**

1. Success of data collection: stable real-time statistic display on user interface, stable data collection on server.

2. Air quality visualization: The air quality map correctly reflects the air quality in Haining city. For example, the concentration of air contamination should be higher in heavy traffic than in intl campus.

3. Speed control: The on-bike device or smartphone should give an alert when the monitored speed exceeds the upper limit or the user set range. This is not the core function of our design, but we add it as we think the function makes sense for safety purpose.