Project

# Title Team Members TA Documents Sponsor
12 Cycling Assist System with Rear Camera Detection
Jacob Betz
Jingdi Liu
Trisha Yadav
Jeff Chang design_document1.pdf
final_paper2.pdf
final_paper1.pdf
other1.pdf
photo1.jpg
photo2.jpg
photo3.jpg
presentation1.pdf
proposal1.pdf
video1.mp4
# Cycling Assist System with Rear Camera Detection

Team Members:
- Jacob Betz (jmbetz2)
- Trisha Yadav (tyadav4)
- Jingdi Liu (jingdil2)

# Problem
Many cyclists run into different dangerous situations while biking on the road. For example, a vehicle may be rapidly approaching in their blindspot, which could cause serious injuries. Another possible danger is the bike leaning too far to the left or right. We are hoping to create a detection system to help distracted drivers and riders from potential accidents.

# Solution

Our solution is to create a low power, user friendly system that can assist cyclists in all of the safety areas listed above. The system would monitor and detect approaching objects in the rear using a camera as well as inform the user if they are leaning too far in one direction. Our system will be competitive compared to other assistance systems in the market on cost and functionality aspects.

# Solution Components

List of Components:
- 1080p USB Camera
- MPU6050 6-axis IMU
- Raspberry PI 4 (4GB)
- Arduino Nano
- Custom PCB
- LED Indicator Lights

Component Breakdown:
- Rear Camera: On the rear of the bike, a camera will be used to monitor the rear of the cyclist. The camera feed will be used to show the cyclist a rear view on the dashboard and will be fed into OpenCV with object detection to detect vehicles, other bikes, etc. We will use a small 1080p USB camera and 3D printed enclosure to mount on the back of the bicycle seat.

- Stability IMU: This sensor is a unique idea to monitor the cyclists roll stability on their bike. It would let the driver know if they were leaning too far in one direction. The IMU we have selected is the MPU6050 6-axis. The IMU will be located on the custom dashboard PCB.

- Custom Dashboard: The driver would be notified using our dashboard. This dashboard, mounted near the handle bars, would have a 3.5 inch LCD display showing the cyclist its rear view from the camera feed. It would also include an array of LED indicator lights to warn the cyclist how close a vehicle, other cyclist or bus is to the driver from behind. Lastly, it would include a brightening LED that tells the driver how far it's leaning to the left or right using the IMU feed. The dashboard would include a Raspberry Pi 4 and Arduino Nano. The Raspberry Pi will be used for OpenCV object detection as well as driving the LCD display. The Arduino Nano will be used with the IMU I2C communication and light up the necessary LEDs. Both of these microcontrollers would connect to the custom PCB that holds the sensors, LED lights and attaches the display. The enclosure would be a 3D printed case that mounts to the bicycle handlebars.

- Small Battery: A small battery will be needed to power the system. This battery will be located next to the dashboard, part of the same enclosure as the PCB.

# Criterion For Success
- Priced competitively with other bike sensors in the market

- Device needs to be able to scan for approaching objects or vehicles, and effectively warn the cyclist of the approaching object on the user’s custom dashboard

- Device needs to be able to inform the user that the bike is leaning too far in a certain direction through a brightening LED

- The camera needs to be small enough and secured well to be able to stay attached to the bike, even in rough terrain

- Camera and dashboard should be waterproof in order to ensure that the driver can utilize the device in different weather conditions

Low Cost Myoelectric Prosthetic Hand

Michael Fatina, Jonathan Pan-Doh, Edward Wu

Low Cost Myoelectric Prosthetic Hand

Featured Project

According to the WHO, 80% of amputees are in developing nations, and less than 3% of that 80% have access to rehabilitative care. In a study by Heidi Witteveen, “the lack of sensory feedback was indicated as one of the major factors of prosthesis abandonment.” A low cost myoelectric prosthetic hand interfaced with a sensory substitution system returns functionality, increases the availability to amputees, and provides users with sensory feedback.

We will work with Aadeel Akhtar to develop a new iteration of his open source, low cost, myoelectric prosthetic hand. The current revision uses eight EMG channels, with sensors placed on the residual limb. A microcontroller communicates with an ADC, runs a classifier to determine the user’s type of grip, and controls motors in the hand achieving desired grips at predetermined velocities.

As requested by Aadeel, the socket and hand will operate independently using separate microcontrollers and interface with each other, providing modularity and customizability. The microcontroller in the socket will interface with the ADC and run the grip classifier, which will be expanded so finger velocities correspond to the amplitude of the user’s muscle activity. The hand microcontroller controls the motors and receives grip and velocity commands. Contact reflexes will be added via pressure sensors in fingertips, adjusting grip strength and velocity. The hand microcontroller will interface with existing sensory substitution systems using the pressure sensors. A PCB with a custom motor controller will fit inside the palm of the hand, and interface with the hand microcontroller.

Project Videos