Cycling Assist System with Rear Object Detection

Team #12

Jacob Betz
Trisha Yadav
Jingdi Liu
Introduction

- 130,000+ people injured in biking accidents every year
- Warning system needed for cyclists
Objectives

● Capturing live video feed
● Alerting cyclist about approaching objects
High Level Requirements

1. Use camera and display to show a rear view of bicycle

2. Detect rear approaching objects within at least 10 meters

3. Inform user about how close a vehicle is to the cyclist using LEDs and a buzzer
Design Overview

- Sensor System Containing Rear Facing Object Detection Camera and Stability Sensors
- Mounted Display for Rear View Monitoring
- Warning LED Light for Approaching Object Detection
Hardware Overview

- Built around 2 major components
 - Raspberry Pi 4
 - STM32
- Live rear display
- Five different warning LED levels
 - Far, mid, and close distance
 - Right and left blind spots
- Power subsystem for over 3A peak
 - 3.7V Lipo Battery
 - 5V Boost Converter
Circuit Schematic

Notable Features

- STM32F103
- 3.3V LDO
- N-type MOSFETs
- JTag Programmer
- RPi GPIO
- Display
Enclosure CAD Design

Fusion 360 Design
Notable Features:

- Separation between major parts
- Removable Lid
- Battery Slot
- USB Camera Cable Shroud

CAD Design V1

CAD Design V2
Software Design (RPi)

- Arducam video input
- Image captured successfully by openCV
- Estimate object distance
- Perform object detection
- Too close
- Send warning signal to STM32
- Finish detection (NO)
Software Design (RPi)

MobileNet V2 + SSD

- Model selection for RPi(TensorFlow lite)
- Feature extraction in MobileNet V2
- Classification by SSD Network
- Additional training on BDD100k
Distance Estimation

- Idea borrow from triangle similarity
- Focal length calculated using a marker
- OpenCV for pixel width finding
Software Design (STM32)

LED Array + Buzzer

- Frame counter for detection to reduce LED blinking due to false positive
- Persistent warning
Results
Final Integrated Assembly
Test Verification

● All RV table tests were ran and verified
● Ran multiple high level tests
 ○ Travelling down bike lane, with car following
 ○ Running in low light conditions
 ○ Testing on multiple objects at once

Power Subsystem Verification

Object Detection Verification
Project Success and Challenges

Successes

- Very successful project!
 - High level requirements fulfilled
 - All subsystem requirements also fulfilled
- Project solves overall problem
- Project improves previous solutions

Challenges

- Complicated Software
- Sensitivity tuning
 - Pro or Con?
- Bulky casing
Future Work

- Waterproof enclosure for rear-facing camera
- Test accuracy of other distance detection systems (LiDAR, Radar, Sonar)
- Clean up wiring system
Conclusions

- Learned about what to consider when developing a product
- Integrated knowledge learned in previous courses
- Successfully met our goals
Thank you! Questions?