

Cycling Assist System with Rear Object Detection

Team #12

Jacob Betz Trisha Yadav Jingdi Liu

- 130,000+ people injured in biking accidents every year
- Warning system needed for cyclists

Objectives

- Capturing live video feed
- Alerting cyclist about approaching objects

High Level Requirements

- 1. Use camera and display to show a rear view of bicycle
- Detect rear approaching objects within at least 10 meters
- Inform user about how close a vehicle is to the cyclist using LEDs and a buzzer

Design Overview

Design Overview

Block Diagram

Hardware Overview

- Built around 2 major components
 - Raspberry Pi 4STM32
- Live rear display
- Five different warning LED levels

 Far, mid, and close distance
 Right and left blind spots
- Power subsystem for over 3A peak
 - 3.7V Lipo Battery 5V Boost Converter

STM32F103

Amp Ripper 3000

Notable Features

- STM32F103
- 3.3V LDO
- N-type MOSFETs
- JTag Programmer
- RPi GPIO
- Display

KiCad PCB Design

PCB 3D View

Fusion 360 Design Notable Features:

- Separation between major parts
- Removable Lid
- Battery Slot
- USB Camera Cable Shroud

CAD Design V1

CAD Design V2

Software Design (RPi)

MobileNet V2 + SSD

- Model selection for RPi(TensorFlow lite)
- Feature extraction in MobileNet V2
- Classification by SSD Network
- Additional training on BDD100k

Distance Estimation

- Idea borrow from triangle similarity
- Focal length calculated using a marker
- OpenCV for pixel width finding

Software Design STM32

Software Design (STM32)

LED Array + Buzzer

- Frame counter for detection to reduce LED blinking due to false positive
- Persistent warning

I

Final Integrated Assembly

江

Test Verification

- All RV table tests were ran and verified
- Ran multiple high level tests
 - Travelling down bike lane, with car following
 - Running in low light conditions
 - Testing on multiple objects at once

Power Subsystem Verification

Object Detection Verification

Successes

- Very successful project!
 - High level requirements fulfilled
 - All subsystem requirements also fulfilled
- Project solves overall problem
- Project improves previous solutions

Challenges

- Complicated Software
- Sensitivity tuning
 - o Pro or Con?
- Bulky casing

- Waterproof enclosure for rear-facing camera
- Test accuracy of other distance detection systems (LiDAR, Radar, Sonar)
- Clean up wiring system

- Learned about what to consider when developing a product
- Integrated knowledge learned in previous courses
- Successfully met our goals

Thank you! Questions?