Order a Pcb

Custom Printed Circuit Boards (PCBs)

In this course, you will be creating and ordering a PCB to use in your project. The primary method for ordering PCBs is to order them through PCBWay. With the help of your TA, you can order a simple, 2-layer, 100mm x 100mm PCB through PCBWay at no cost to you. This PCB will simply be fabricated, as opposed to assembled, so a major portion of this class will be soldering and assembling the PCB you order. This means that you will need to source your components either through the course or other means. See the getting parts page for more details.

Alternatively, you can order a PCB from any outside vendor (including PCBWay) and pay for the cost of the board out of pocket. By paying for a PCB yourself, you are not required to meet the deadlines imposed by the course and can sometimes get your board more quickly.

In rare cases, some teams will be allowed to order PCBs through the Electronics Services Shop in ECEB. If you have need of special board layouts or require a PCB very early in the semester, please discuss this option with your TA as early as possible.

PCBway Orders Through the Course

Orders through PCBway can be submitted and paid for by the ECE department with the help of your TA. Orders will be uploaded to PCBway by your TA and paid for on the dates listed on the course calendar. Please note that the PCBway orders will not be manufactured or shipped until they are paid for so please be aware of the lag time between order submission and payment. In addition, your order must pass PCBway's audit before the payment date for your order to be processed. In order to help students pass audit more quickly, we have provided a DRC file that can be imported in to EagleCAD to verify that your board meets PCBway's capabilities. Passing the DRC does not guarantee that your board will pass audit but it does greatly increase the probability of that event.

Electronic Services Shop

Orders placed through the Electronic Services Shop will require TA approval so please discuss with your TA before contacting the Services Shop. The software most commonly used is EagleCAD. Contact a technician in the Electronic Services Shop with questions.

Please be aware of the PCB deadlines posted on the course calendar. If you are unable to meet these deadlines, you will not be able to order a PCB through the the Electronic Services Shop. You will still be able to order PCBs through third party vendors, just be aware that rushed orders can become expensive.

Commercial quality boards

The most commonly used programs for board layout are Eagle and Orcad Layout. The two software packages below allow a schematic to be drawn and translated into a board layout.

Once the board has been laid out, some companies will manufacture small quantities for a very reasonable price.

Cypress Robot Kit

Todd Nguyen, Byung Joo Park, Alvin Wu

Cypress Robot Kit

Featured Project

Cypress is looking to develop a robotic kit with the purpose of interesting the maker community in the PSOC and its potential. We will be developing a shield that will attach to a PSoC board that will interface to our motors and sensors. To make the shield, we will design our own PCB that will mount on the PSoC directly. The end product will be a remote controlled rover-like robot (through bluetooth) with sensors to achieve line following and obstacle avoidance.

The modules that we will implement:

- Motor Control: H-bridge and PWM control

- Bluetooth Control: Serial communication with PSoC BLE Module, and phone application

- Line Following System: IR sensors

- Obstacle Avoidance System: Ultrasonic sensor

Cypress wishes to use as many off-the-shelf products as possible in order to achieve a “kit-able” design for hobbyists. Building the robot will be a plug-and-play experience so that users can focus on exploring the capabilities of the PSoC.

Our robot will offer three modes which can be toggled through the app: a line following mode, an obstacle-avoiding mode, and a manual-control mode. In the manual-control mode, one will be able to control the motors with the app. In autonomous modes, the robot will be controlled based off of the input from the sensors.