Getting Parts for Your Project :: ECE 445 - Senior Design Laboratory

Getting Parts for Your Project

Student groups have a budget of $50 per student as of fall 2023. This money can be accessed through your TAs CFOP number. The ways parts can be sources are listed below in order of desirability.

1. Lab Kit

Each group is issued a locker and lab kit. A lab kit should include banana plugs and a breadboard.

2. ECEB 2070 Lab

There are many parts available for free in the ECEB 2070 lab such as THT passive components, MOSFETs, and line operated DC power supplies.

3. ECE 445 Inventory

Your TA can check out parts ECE 445 stores in white cabinets at the back of the lab: link. This inventory spreadsheet has not been updated in some time. There are items on this list that may not be in the cabinets and there are items in the cabinets that may not be on this list. Use this form for checkout: link

4. Electronics Services Shop (A.K.A. ECE Services Shop)

The Electronics Services Shop is located on the first floor of ECEB near the cargo elevator in ECEB 1041. They have a large stock of THT ICs (such as op-amps), potentiometers, motors, resistors, connectors, etc. Visit them when they are open to pick up parts.

Self-Service Inventory

Recently, they have started stocking 0805 surface mount passive components, crystal oscillators, microcontrollers, and linear regulators. The microcontroller portion of your board can probably be built entirely with parts from the Electronics Services Shop.  You do not need to pay for parts you obtain from the Electronics Services Shop.

SMD Component Inventory

To obtain parts from the e-shop, please contact your TA with a list. Your TA must email the e-shop and they will collect the parts. Your TA will get an email when the parts are ready. Your TA must pick up the parts from the e-shop . The e-shop will not release the parts to you.

SMD Parts Request Form

 

5. ECE Supply Center (A.K.A. ECE Store)

The ECE Supply Center is located on the first floor of ECEB in room 1031 near the loading dock. You must pay for parts out of pocket or with your TA's CFOP number. They stock breadboards, project boxes, jumper wires, THT LSI logic ICs, THT analog ICs, and more. This is a fantastic resource for building prototypes. You can search their catalog here: https://my.ece.illinois.edu/storeroom/catalog.asp.

6. Free Samples from Companies

It should be mentioned that companies many times are willing to provide small quantities of their products to students engaged in design projects. You might consider approaching the manufacturer directly, particularly regarding their newer products which they are interested in promoting. Don't count on success with this, but it has often been very useful.

7. MY.ECE Ordering (last resort)

You can order parts from amazon, digikey, mouser, etc. using the money provided to you by the course with your TA's CFOP number. Orders placed through this avenue must be approved by your TA through myECE. If you order multiple parts through digikey or mouser, please provide a shopping cart link. This method of ordering is best for parts that cannot be found in any of the sources listed above. This includes SMD MOSFETs, high performance ADCs/DACs, power converter ICs, SMD op amps, modem ICs, etc. Please refer to this tutorial for more instructions: http://courses.engr.illinois.edu/ece445/lab/resources/ece_purchasing_app_tutorial.pdf

Personal Purchases

It is always possible and encouraged to purchase your own parts from a local store (Radio Shack, Best Buy, etc.) or order them from online vendors. Personal purchases will not be reimbursed by the department.

Iron Man Mouse

Jeff Chang, Yayati Pahuja, Zhiyuan Yang

Featured Project

# Problem:

Being an ECE student means that there is a high chance we are gonna sit in front of a computer for the majority of the day, especially during COVID times. This situation may lead to neck and lower back issues due to a long time of sedentary lifestyle. Therefore, it would be beneficial for us to get up and stretch for a while every now and then. However, exercising for a bit may distract us from working or studying and it might take some time to refocus. To control mice using our arm movements or hand gestures would be a way to enable us to get up and work at the same time. It is similar to the movie Iron Man when Tony Stark is working but without the hologram.

# Solution Overview:

The device would have a wrist band portion that acts as the tracker of the mouse pointer (implemented by accelerometer and perhaps optical sensors). A set of 3 finger cots with gyroscope or accelerometer are attached to the wrist band. These sensors as a whole would send data to a black box device (connected to the computer by USB) via bluetooth. The box would contain circuits to compute these translational/rotational data to imitate a mouse or trackpad movements with possible custom operation. Alternatively, we could have the wristband connected to a PC by bluetooth. In this case, a device driver on the OS is needed for the project to work.

# Solution Components:

Sensors (finger cots and wrist band):

1. 3-axis accelerometer attached to the wrist band portion of the device to collect translational movement (for mouse cursor tracking)

2. gyroscope attached to 3 finger cots portion to collect angular motion when user bend their fingers in different angles (for different clicking/zoom-in/etc operations)

3. (optional) optical sensors to help with accuracy if the accelerometer is not accurate enough. We could have infrared emitters set up around the screen and optical sensors on the wristband to help pinpoint cursor location.

4. (optional) flex sensors could also be used for finger cots to perform clicks in case the gyroscope proves to be inaccurate.

Power:

Lithium-ion battery with USB charging

Transmitter component:

1. A microcontroller to pre-process the data received from the 4 sensors. It can sort of integrate and synchronize the data before transmitting it.

2. A bluetooth chip that transmits the data to either the blackbox or the PC directly.

Receiver component:

1. Plan A: A box plugged into USB-A on PC. It has a bluetooth chip to receive data from the wristband, and a microcontroller to process the data into USB human interface device signals.

2. Plan B: the wristband is directly connected to the PC and we develop a device driver on the PC to process the data.

# Criterion for Success:

1. Basic Functionalities supported (left click, right click, scroll, cursor movement)

2. Advanced Functionalities supported(zoom in/out, custom operations eg. volume control)

3. Performance (accuracy & response time)

4. Physical qualities (easy to wear, durable, and battery life)

Business Office

If none of these methods work, you can go through the business office with the help of your TA.