Getting Parts for Your Project :: ECE 445 - Senior Design Laboratory

Getting Parts for Your Project

Student groups have a budget of $50 per student as of fall 2023. This money can be accessed through your TAs CFOP number. The ways parts can be sources are listed below in order of desirability.

1. Lab Kit

Each group is issued a locker and lab kit. A lab kit should include banana plugs and a breadboard.

2. ECEB 2070 Lab

There are many parts available for free in the ECEB 2070 lab such as THT passive components, MOSFETs, and line operated DC power supplies.

3. ECE 445 Inventory

Your TA can check out parts ECE 445 stores in white cabinets at the back of the lab: link. This inventory spreadsheet has not been updated in some time. There are items on this list that may not be in the cabinets and there are items in the cabinets that may not be on this list. Use this form for checkout: link

4. Electronics Services Shop (A.K.A. ECE Services Shop)

The Electronics Services Shop is located on the first floor of ECEB near the cargo elevator in ECEB 1041. They have a large stock of THT ICs (such as op-amps), potentiometers, motors, resistors, connectors, etc. Visit them when they are open to pick up parts.

Self-Service Inventory

Recently, they have started stocking 0805 surface mount passive components, crystal oscillators, microcontrollers, and linear regulators. The microcontroller portion of your board can probably be built entirely with parts from the Electronics Services Shop.  You do not need to pay for parts you obtain from the Electronics Services Shop.

SMD Component Inventory

To obtain parts from the e-shop, please contact your TA with a list. Your TA must email the e-shop and they will collect the parts. Your TA will get an email when the parts are ready. Your TA must pick up the parts from the e-shop . The e-shop will not release the parts to you.

SMD Parts Request Form link

 

5. ECE Supply Center (A.K.A. ECE Store)

The ECE Supply Center is located on the first floor of ECEB in room 1031 near the loading dock. You must pay for parts out of pocket or with your TA's CFOP number. They stock breadboards, project boxes, jumper wires, THT LSI logic ICs, THT analog ICs, and more. This is a fantastic resource for building prototypes. You can search their catalog here: https://my.ece.illinois.edu/storeroom/catalog.asp.

6. Free Samples from Companies

It should be mentioned that companies many times are willing to provide small quantities of their products to students engaged in design projects. You might consider approaching the manufacturer directly, particularly regarding their newer products which they are interested in promoting. Don't count on success with this, but it has often been very useful.

7. MY.ECE Ordering (last resort)

You can order parts from amazon, digikey, mouser, etc. using the money provided to you by the course with your TA's CFOP number. Orders placed through this avenue must be approved by your TA through myECE. If you order multiple parts through digikey or mouser, please provide a shopping cart link. This method of ordering is best for parts that cannot be found in any of the sources listed above. This includes SMD MOSFETs, high performance ADCs/DACs, power converter ICs, SMD op amps, modem ICs, etc. Please refer to this tutorial for more instructions: http://courses.engr.illinois.edu/ece445/lab/resources/ece_purchasing_app_tutorial.pdf

Personal Purchases

It is always possible and encouraged to purchase your own parts from a local store (Radio Shack, Best Buy, etc.) or order them from online vendors. Personal purchases will not be reimbursed by the department.

Dynamic Legged Robot

Joseph Byrnes, Kanyon Edvall, Ahsan Qureshi

Featured Project

We plan to create a dynamic robot with one to two legs stabilized in one or two dimensions in order to demonstrate jumping and forward/backward walking. This project will demonstrate the feasibility of inexpensive walking robots and provide the starting point for a novel quadrupedal robot. We will write a hybrid position-force task space controller for each leg. We will use a modified version of the ODrive open source motor controller to control the torque of the joints. The joints will be driven with high torque off-the-shelf brushless DC motors. We will use high precision magnetic encoders such as the AS5048A to read the angles of each joint. The inverse dynamics calculations and system controller will run on a TI F28335 processor.

We feel that this project appropriately brings together knowledge from our previous coursework as well as our extracurricular, research, and professional experiences. It allows each one of us to apply our strengths to an exciting and novel project. We plan to use the legs, software, and simulation that we develop in this class to create a fully functional quadruped in the future and release our work so that others can build off of our project. This project will be very time intensive but we are very passionate about this project and confident that we are up for the challenge.

While dynamically stable quadrupeds exist— Boston Dynamics’ Spot mini, Unitree’s Laikago, Ghost Robotics’ Vision, etc— all of these robots use custom motors and/or proprietary control algorithms which are not conducive to the increase of legged robotics development. With a well documented affordable quadruped platform we believe more engineers will be motivated and able to contribute to development of legged robotics.

More specifics detailed here:

https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=30338

Project Videos

Business Office

If none of these methods work, you can go through the business office with the help of your TA.