Ethical Guidelines

University of Illinois trained engineers are the best and most highly sought in the world. Our graduates are superbly trained, highly competent, and creative. This, however, is not enough. Our engineers must also be trusted to conduct themselves according to the highest ethical standards. All teams must address ethical considerations in their projects. This requirement has two parts.

First, there is a stringent Code of Ethics published by professional societies, such as IEEE and ACM. The power of these Codes of Ethics is to provide guidance to engineers in decision making and to lend the weight of the collective community of engineers to individuals taking a stand on ethical issues. Thus the Code of Ethics both limits the professional engineer and empowers the professional engineer to stand firm on fundamental ethical bedrock. All teams must read the IEEE code and ACM code and comment on any sections of the code that bear directly on the project.

Second, we expect our students to have personal standards of conduct consistent with the IEEE and ACM Codes of Ethics, but also beyond it. That is, there are areas of ethics not addressed by these Codes that the engineer may consider in taking on projects or jobs or making other professional decisions. These are personal standards and choices. In the context of the class, there are no right or wrong answers here. Our students simply need to demonstrate that they are thinking deeply about their own decisions and the consequences of those decisions. We encourage our students to consider the wider impact of their projects and address any concerns raised by potential uses of the project. Students should ask themselves, "Would I be comfortable having my name widely attached to this project? Do I want to live in a society where this product is available or widely used? Would I be proud of a career dominated by the decision making demonstrated here?" Remember that UIUC engineers have a long history of inventions that really has changed the world.

If the students feel that these Codes of Ethics does not directly bear on their project and that there are no other reasonable concerns, they should not invent issues where there are none. Students will still be expected to be familiar with the IEEE Code of Ethics and ACM Code of Ethics.

Covert Communication Device

Ahmad Abuisneineh, Srivardhan Sajja, Braeden Smith

Covert Communication Device

Featured Project

**Partners (seeking one additional partner)**: Braeden Smith (braeden2), Srivardhan Sajja (sajja3)

**Problem**: We imagine this product would have a primary use in military/law enforcement application -- especially in dangerous, high risk missions. During a house raid or other sensitive mission, maintaining a quiet profile and also having good situational awareness is essential. That mean's that normal two way radios can't work. And alternatives, like in-ear radios act as outside->in communication only and also reduce the ability to hear your surroundings.

**Solution**: We would provide a series of small pocketable devices with long battery that would use LoRa radios to provide a range of 1-5 miles. They would be rechargeable and have a single recessed soft-touch button that would allow someone to find it inside of pockets and tap it easily. The taps would be sent in real-time to all other devices, where they would be translated into silent but noticeable vibrations. (Every device can obviously TX/RX).

Essentially a team could use a set of predetermined signals or even morse code, to quickly and without loss of situational awareness communicate movements/instructions to others who are not within line-of-sight.

The following we would not consider part of the basic requirements for success, but additional goals if we are ahead of schedule:

We could also imagine a base-station which would allow someone using a computer to type simple text that would be sent out as morse code or other predetermined patterns. Additionally this base station would be able to record and monitor the traffic over the LoRa channels (including sender).

**Solutions Components**:

- **Charging and power systems**: the device would have a single USB-C/Microusb port that would connect to charging circuitry for the small Lithium-ion battery (150-500mAh). This USB port would also connect to the MCU. The subsystem would also be responsible to dropping the lion (3.7-4.2V to a stable 3.3V logic level). and providing power to the vibration motor.

- **RF Communications**: we would rely on externally produced RF transceivers that we would integrate into our PCB -- DLP-RFS1280, https://www.sparkfun.com/products/16871, https://www.adafruit.com/product/3073, .

-**Vibration**: We would have to research and source durable quiet, vibration motors that might even be adjustable in intensity

- **MCU**: We are likely to use the STM32 series of MCU's. We need it to communicate with the transceiver (probably SPI) and also control the vibration motor (by driving some transistor). The packets that we send would need to be encrypted (probably with AES). We would also need it to communicate to a host computer for programming via the same port.

- **Structural**: For this prototype, we'd imagine that a simple 3d printed case would be appropriate. We'd have to design something small and relatively ergonomic. We would have a single recessed location for the soft-touch button, that'd be easy to find by feel.

**Basic criterion for success:** We have at least two wireless devices that can reliably and quickly transfer button-presses to vibrations on the other device. It should operate at at *least* 1km LOS. It should be programmable + chargeable via USB. It should also be relatively compact in size and quiet to use.

**Additional Success Criterion:** we would have a separate, 3rd device that can stay permanently connected to a computer. It would provide some software that would be able to send and receive from the LoRa radio, especially ASCII -> morse code.