Special Circuit :: ECE 445 - Senior Design Laboratory

Special Circuit

A student whose Senior Thesis Project (ECE 499) does not involve the design and construction or testing of electronic devices or hardware is required to complete a Special Circuit Project in the ECE 445 lab during the semester they take ECE 499. In addition, students enrolled in ECE 445 who are not undertaking a hardware dominant project are required to complete the special circuit (although this is strongly discouraged and the course staff will work with your team to make sure you have enough hardware in your project to avoid having to complete the special circuit.)

The special circuit is typically posted in the middle of the semester. Once you sign up for the special circuit (see below), you will be assigned a TA, a locker, and a special circuit which generally takes about 12-15 hours to complete. When you have it designed and built, you will give a functional demonstration to your TA, who will then inform the professor who will inform undergraduate advising that your task is complete. You are NOT required to attend any of the classes, reviews, demos, or presentations associate with the ECE 445 class.

Sign up for Spring 2020 is now open

Sign up for the Special Circuit assignment on the Lab Access page. Instructions for completing the special circuit will then be provided in the near future. Please check this page for updates.

Link to all Special Circuit design problems. 

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)