Lectures :: ECE 445 - Senior Design Laboratory

Lectures

Fall 2025 Lecture Material:

 

Pre-Lecture #1:


(before the first lecture)

 

 

Brainstorming and Ideation

  • Brainstorming and Ideation slides (pptx)
  • Videos (watch before coming to class)

 

 

Lecture #1:


(August 26th )

 

Getting Started

  • Course Overview and Requests for Approval (slides)- Prof. Arne Fliflet
  • Conflict Management Workshop (slides)- Prof. Olga Mironenko (olgamiro@illinois.edu)
  • Pitches
    • Sound Asleep (slides) - Maggie Li
    • Double Sequential External defibrillation (slides) - Varun Gopal
    • Neuroguard (slides) - Meenakshi Singhal
    • Fadex (slides) - Shrey Patel
    • Lab Escape - spinning LED globe (website) - Paul Kwait
    • Smart Home for MS (slides) - Dr. Manuel Hernandez
    • Ant-weight, 3D Printed Battlebot Challenge (slides)- Prof. Viktor Gruev (vgruev@illinois.edu)
  • Brainstorming

 

Pre-Lecture #2:


(before the second lecture)

 

 

Beyond Ideation

 

 

Lecture #2:


(September 2nd)

 

 

Moving Forward

  • Introduction - A. Fliflet (slides)
  • IP - Dr. Michelle Chitambar (slides)
  • Pitches
    • Skin integrated pace maker (slides) - Shiyuan Duan
    • Wearable neuro-modulation (slides) - Shiyuan Duan
    • Adherascent (slides) - Brian Mehdian
    • Suction Sense (slides) - Sharon Chao
    • Underground root imaging (slides) - John Hart
  • Proposal and design doc - Jason Jung (slides)
  • Modular design - Weiman Yan (slides)
  • Lab notebook - Wesley Pang (slides)
  • Requirements & Verification Table - Jason Zhang (slides)
  • PCB Tips - Jason Jung (slides)
  • Comments on Web Board - Prof. Rakesh Kumar (notes)

 

Pre-Lecture #3:


(before the third lecture)

 

 

Design and Writing Tips

 

 

Lecture #3:

(September 9th)

 

 

Last Stop Before RFA

  • Introduction - A. Fliflet (slides)
  • Communications - Dr. Laura Stegrim (slides)
  • Lab Safety - Casey Smith (slides)
  • Machine shop - Gregg Bennet (slides)
  • Writing - Aaron Greiger (slides)
  • Ethics - A. Fliflet (slides)

Spring 2023 Video Lectures:

Brainstorming

Finding a Problem (Video)
Generating Solutions (Video)
Diving Deeper (Video)
Voting (Video)
Reverse Brainstorming (Video)
Homework for Everyone (Video)

Important Information

Using the ECE 445 Website (Video)
Lab Notebook (Video , Slides)
Modular Design (Video, Slides)
Circuit Tips and Debugging (Video , Slides)
Eagle CAD Tutorial (Video)
Spring 2018 IEEE Eagle Workshop (Slides)
Spring 2018 IEEE Soldering Workshop (Slides)

Major Assignments and Milestones

Request for Approval (Video, Slides)
Project Proposal (Video, slides)
Design Document (Video, slides)
Design Review (Video, slides)
Writing Tips (Video, slides)

El Durazno Wind Turbine Project

Alexander Hardiek, Saanil Joshi, Ganpath Karl

El Durazno Wind Turbine Project

Featured Project

Partners: Alexander Hardiek (ahardi6), Saanil Joshi (stjoshi2), and Ganpath Karl (gkarl2)

Project Description: We have decided to innovate a low cost wind turbine to help the villagers of El Durazno in Guatemala access water from mountains, based on the pitch of Prof. Ann Witmer.

Problem: There is currently no water distribution system in place for the villagers to gain access to water. They have to travel my foot over larger distances on mountainous terrain to fetch water. For this reason, it would be better if water could be pumped to a containment tank closer to the village and hopefully distributed with the help of a gravity flow system.

There is an electrical grid system present, however, it is too expensive for the villagers to use. Therefore, we need a cheap renewable energy solution to the problem. Solar energy is not possible as the mountain does not receive enough solar energy to power a motor. Wind energy is a good alternative as the wind speeds and high and since it is a mountain, there is no hindrance to the wind flow.

Solution Overview: We are solving the power generation challenge created by a mismatch between the speed of the wind and the necessary rotational speed required to produce power by the turbine’s generator. We have access to several used car parts, allowing us to salvage or modify different induction motors and gears to make the system work.

We have two approaches we are taking. One method is converting the induction motor to a generator by removing the need of an initial battery input and using the magnetic field created by the magnets. The other method is to rewire the stator so the motor can spin at the necessary rpm.

Subsystems: Our system components are split into two categories: Mechanical and Electrical. All mechanical components came from a used Toyota car such as the wheel hub cap, serpentine belt, car body blade, wheel hub, torsion rod. These components help us covert wind energy into mechanical energy and are already built and ready. Meanwhile, the electrical components are available in the car such as the alternator (induction motor) and are designed by us such as the power electronics (AC/DC converters). We will use capacitors, diodes, relays, resistors and integrated circuits on our printed circuit boards to develop the power electronics. Our electrical components convert the mechanical energy in the turbine into electrical energy available to the residents.

Criterion for success: Our project will be successful when we can successfully convert the available wind energy from our meteorological data into electricity at a low cost from reusable parts available to the residents of El Durazno. In the future, their residents will prototype several versions of our turbine to pump water from the mountains.