Lectures :: ECE 445 - Senior Design Laboratory

Lectures

Fall 2024 Lecture Material:

 

Pre-Lecture #1:


(before the first lecture)

 

 

Brainstorming and Ideation

  • Brainstorming and Ideation slides (pptx)
  • Videos (watch before coming to class)

 

 

Lecture #1:


(January 21st )

 

Getting Started

  • Welcome and Course Overview (link)- Professor Arne Fliflet
  • Request for Approval (link)
  • Conflict Management Workshop (link)- Professor Olga Mironenko (olgamiro@illinois.edu)
  • Pitches
    • Ant-weight, 3D Printed Battlebot Challenge (link)- Professor Viktor Gruev (vgruev@illinois.edu)
    • ECEB Autonomous Window Cleaning System- Professor Jennifer Bernhard (jbernhar@illinois.edu)
  • Brainstorming

 

Pre-Lecture #2:


(before the second lecture)

 

 

Beyond Ideation

 

 

Lecture #2:


(January 28th)

 

 

Moving Forward

  • Introduction
  • Ethics (link)
  • PCB Tips (link)
  • Pitch(es)
    • A Better, Safer EVD (External Ventricular Drain) (link) (link)- Saguna Pappu (spappu@illinois.edu)
    • Spurlock Muesum Artifact Mapping Dome (link)- Aaron Graham (agraham4@illinois.edu)
    • Establishing an Intelligent Square Stepping Exercise System for Cognitive-Motor Rehabilitation in Older Adults with Multiple Sclerosis (link) – Professor Manuel Hernandez (mhernand@illinois.edu)
  • Senior Design and Lab Safety (link) – Casey Smith (cjsmith0@illinois.edu)
  • Brainstorming

 

Pre-Lecture #3:


(before the third lecture)

 

 

Design and Writing Tips

 

 

Lecture #3:

(January 30th)

 

 

Last Stop Before RFA

  • A Better, Safer EVD (External Ventricular Drain) (link) (link)- Saguna Pappu (spappu@illinois.edu)
  • Proposal and Design Document Overview (link)- Arne Fliflet
  • Documentation Details (link)
  • Intellectual Property – Dr. Michelle Chitambar (mchitamb@illinois.edu) (link)
  • Machine Shop – Gregg Bennett (gbenntt@illinois.edu)
  • Writing Center – Dr. Aaron Geiger (ageiger2@illinois.edu) (link)
  • Lab Notebook (link)
  • Modular Design (link)
  • R&V Table (link)
  • Proposal (link)
  • Design Review (link)

Spring 2023 Video Lectures:

Brainstorming

Finding a Problem (Video)
Generating Solutions (Video)
Diving Deeper (Video)
Voting (Video)
Reverse Brainstorming (Video)
Homework for Everyone (Video)

Important Information

Using the ECE 445 Website (Video)
Lab Notebook (Video , Slides)
Modular Design (Video, Slides)
Circuit Tips and Debugging (Video , Slides)
Eagle CAD Tutorial (Video)
Spring 2018 IEEE Eagle Workshop (Slides)
Spring 2018 IEEE Soldering Workshop (Slides)

Major Assignments and Milestones

Request for Approval (Video, Slides)
Project Proposal (Video, slides)
Design Document (Video, slides)
Design Review (Video, slides)
Writing Tips (Video, slides)

Digitizing the Restaurant with Network-Enabled Smart Tables

Andrew Chen, Eric Ong, Can Zhou

Featured Project

# Students

Andrew Chen - andrew6

Eric Ong - eong3

Can Zhou - czhou34

# Problem:

The restaurant industry relies on relatively archaic methods of management and customer service. Internal restaurant computer systems are limited and rely on staff members to monitor customer status. Restaurants lack contact-free transactions for clientele.

# Solution Overview:

Our solution to this problem is to develop a standalone LAN restaurant network system to manage customer status and occupancy for restaurants without the need for personnel to monitor it manually. Along with this, to accommodate for contact-free interactions, we propose a system for payment methods. To address customer preferences, we will provide height accommodation built into the table for different types of people.

# Solution Components:

[Self-adjusting Customer Height Accommodation] - The table will be held up with a linear actuator, thus allowing for the overall height to be adjustable. The table will adjust its height accordingly to the customers’ heights once they sit down. We plan to make the table adjust the table’s height by measuring the distance between the bottom of the table with the customer’s knees when they are sitting down using ultrasonic sensors.

[NFC Payment and Card Reader Payment] - The table will have NFC reader and magstripe reader for contactless delivery. The payment data will be sent to the centralized hub for processing and confirmation.

[Table Pressure Sensor] - The status of a table will be gauged based on the amount of weight on the physical table itself. An occupied (or even just an unoccupied and dirty table) will be marked as such since the weight of excess food, water, plates, and whatever else the customer may bring will be measured by this pressure sensor.

[Computer Mesh Network] - We plan to create a mesh network of raspberry pi’s to track the status of tables in a restaurant. This network will communicate via some form of wireless communication (Wi-FI, bluetooth, or Zigbee).

# Criterion for Success:

This project seeks to create a solution in which restaurants can minimize customer interaction with features that accommodate individual needs, such as the height of the table and payment methods. This project will be considered successful with a working prototype that includes features that may be included in an actual restaurant setting.

Project Videos