Lectures :: ECE 445 - Senior Design Laboratory

Lectures

Fall 2024 Lecture Material:

 

Pre-Lecture #1:


(before the first lecture)

 

 

Brainstorming and Ideation

  • Brainstorming and Ideation slides (pptx)
  • Videos (watch before coming to class)

 

 

Lecture #1:


(August 27th )

 

Getting Started

  • Welcome and Course Overview (link)- Professor Arne Fliflet
  • Request for Approval (link)
  • Pitches
    • PowerBox Technology (link)- Oscar Castillo (oscar.azofeifa@powerboxtech.com)
    • Spurlock Museum Artifact Dome (link)- Aaron Graham (agraham4@illinois.edu)
    • Ant-weight, 3D Printed Battlebot Challenge (link)- Professor Viktor Gruev (vgruev@illinois.edu)
  • Conflict Management Workshop (link)- Professor Olga Mironenko (olgamiro@illinois.edu)
  • Brainstorming

 

Pre-Lecture #2:


(before the second lecture)

 

 

Beyond Ideation

 

 

Lecture #2:


(January 23rd)

 

 

Moving Forward

  • Introduction
  • Human-Centered Autonomy- Professor Katherine Driggs-Campbell (krdc@illinois.edu)
  • Ethics (link)
  • Senior Design and Lab Safety (link) – Casey Smith (cjsmith0@illinois.edu)
  • Pitch(es)
    • Establishing an Intelligent Square Stepping Exercise System for Cognitive-Motor Rehabilitation in Older Adults with Multiple Sclerosis (link) – Professor Manuel Hernandez (mhernand@illinois.edu)
  • Brainstorming

 

Pre-Lecture #3:


(before the third lecture)

 

 

Design and Writing Tips

 

 

Lecture #3:

(January 30th)

 

 

Last Stop Before RFA

  • Intellectual Property – Dr. Michelle Chitambar (mchitamb@illinois.edu) (link)
  • Writing Center – Dr. Aaron Geiger (ageiger2@illinois.edu) (link)
  • Machine Shop – Gregg Bennett (gbenntt@illinois.edu)
  • PCB Tips (link)
  • Lab Notebook (link)
  • Modular Design (link)
  • R&V Table (link)
  • Proposal (link)
  • Design Review (link)

Spring 2023 Video Lectures:

Brainstorming

Finding a Problem (Video)
Generating Solutions (Video)
Diving Deeper (Video)
Voting (Video)
Reverse Brainstorming (Video)
Homework for Everyone (Video)

Important Information

Using the ECE 445 Website (Video)
Lab Notebook (Video , Slides)
Modular Design (Video, Slides)
Circuit Tips and Debugging (Video , Slides)
Eagle CAD Tutorial (Video)
Spring 2018 IEEE Eagle Workshop (Slides)
Spring 2018 IEEE Soldering Workshop (Slides)

Major Assignments and Milestones

Request for Approval (Video, Slides)
Project Proposal (Video, slides)
Design Document (Video, slides)
Design Review (Video, slides)
Writing Tips (Video, slides)

Electronic Replacement for COVID-19 Building Monitors @ UIUC

Patrick McBrayer, Zewen Rao, Yijie Zhang

Featured Project

Team Members: Patrick McBrayer, Yijie Zhang, Zewen Rao

Problem Statement:

Students who volunteer to monitor buildings at UIUC are at increased risk of contracting COVID-19 itself, and passing it on to others before they are aware of the infection. Due to this, I propose a project that would create a technological solution to this issue using physical 2-factor authentication through the “airlock” style doorways we have at ECEB and across campus.

Solution Overview:

As we do not have access to the backend of the Safer Illinois application, or the ability to use campus buildings as a workspace for our project, we will be designing a proof of concept 2FA system for UIUC building access. Our solution would be composed of two main subsystems, one that allows initial entry into the “airlock” portion of the building using a scannable QR code, and the other that detects the number of people that entered the space, to determine whether or not the user will be granted access to the interior of the building.

Solution Components:

Subsystem #1: Initial Detection of Building Access

- QR/barcode scanner capable of reading the code presented by the user, that tells the system whether that person has been granted or denied building access. (An example of this type of sensor: (https://www.amazon.com/Barcode-Reading-Scanner-Electronic-Connector/dp/B082B8SVB2/ref=sr_1_11?dchild=1&keywords=gm65+scanner&qid=1595651995&sr=8-11)

- QR code generator using C++/Python to support the QR code scanner.

- Microcontroller to receive the information from the QR code reader and decode the information, then decide whether to unlock the door, or keep it shut. (The microcontroller would also need an internal timer, as we plan on encoding a lifespan into the QR code, therefore making them unusable after 4 days).

- LED Light to indicate to the user whether or not access was granted.

- Electronic locking mechanism to open both sets of doors.

Subsystem #2: Airlock Authentication of a Single User

- 2 aligned sensors ( one tx and other is rx) on the bottom of the door that counts the number of people crossing a certain line. (possibly considering two sets of these, so the person could not jump over, or move under the sensors. Most likely having the second set around the middle of the door frame.

- Microcontroller to decode the information provided by the door sensors, and then determine the number of people who have entered the space. Based on this information we can either grant or deny access to the interior building.

- LED Light to indicate to the user if they have been granted access.

- Possibly a speaker at this stage as well, to tell the user the reason they have not been granted access, and letting them know the

incident has been reported if they attempted to let someone into the building.

Criterion of Success:

- Our system generates valid QR codes that can be read by our scanner, and the data encoded such as lifespan of the code and building access is transmitted to the microcontroller.

- Our 2FA detection of multiple entries into the space works across a wide range of users. This includes users bound to wheelchairs, and a wide range of heights and body sizes.