
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

Cycling Assist System with Rear Camera

Detection

Team #12

JACOB BETZ

(jmbetz2@illinois.edu)

TRISHA YADAV

(tyadav4@illinois.edu)

JINGDI LIU

(jingdil2@illinois.edu)

TA: Kai Chieh Chang

December 4, 2022

Abstract

Cycling is an extremely popular activity. Every year, biking related purchases in-

crease. However, many individuals get injured in bike related accidents. Over 130,000

people are injured while biking in the United States every year [1]. Along with this,

the number of preventable bicycle related deaths increased by 16% in 2020. One thing

that can help prevent accidents for cyclists is a rear view detection and warning sys-

tem. This could be imperative to the safety of cyclers on main roads or busy trails.

This project successfully created a system where a user can place a camera on the seat

of their bicycle to capture a live video feed. This live video feed is shown on a dis-

play system on the handlebar of the user’s bike. This display system will also use

LEDs and a buzzer to inform users about approaching vehicles and bikes. It can also

provide warnings about objects approaching in left or right blind spots.

i

Contents

1 Introduction 1

1.1 Purpose and Functionality . 1

1.2 Subsystem Overview . 2

1.3 High-Level Requirements List . 3

2 Design 4

2.1 Design Description and Justification . 4

2.1.1 Power Subsystem . 4

2.1.2 Rear View Camera + Object Detection 4

2.1.3 Dashboard Warning System . 5

2.1.4 Hardware Schematics . 5

2.1.5 Physical Design . 5

2.1.6 Software Design Raspberry Pi . 8

2.1.7 Software Design STM32 Software . 9

2.2 Equations and Simulations . 10

2.2.1 Operating Voltage and Current Calculations 10

2.2.2 Distance Estimation . 12

2.3 Design Alternatives . 13

2.3.1 Power Subsystem . 13

2.3.2 Computer Vision Software . 14

3 Requirements and Verifications 16

3.1 Power Subsystem . 16

3.1.1 Results . 17

3.2 Rear View Camera + Object Detection . 18

3.2.1 Results . 18

3.3 Dashboard Warning System . 19

3.3.1 Results . 19

4 Cost and Schedule 21

ii

4.1 Cost Analysis . 21

4.2 Schedule . 23

5 Conclusion 24

5.1 Accomplishments . 24

5.2 Uncertainties . 24

5.3 Future Work and Alternatives . 25

5.4 Ethicical Considerations . 25

A Circuit and PCB Schematics 27

References 30

iii

1 Introduction

1.1 Purpose and Functionality

Cycling is a very popular activity among many different age groups. With new eco-

conscious initiatives launching across the United States, more and more people are opting

for cycling as a mode of transportation. However, as common of an activity as it is, biking

can also be extremely dangerous. Because more people are using cycling for transporta-

tion, there are even more bicycles riding on main roads. While new monitors and tracking

systems for bicycles appear on the market all the time, there are a few safety features that

have yet to be made.

A necessary feature for frequent cyclers is rear view detection. Along with this, while

there are many different detection systems available, many require you to order separate

sensors to monitor different features. There are very few systems that encompass different

cyclist safety features in one compact dashboard. For example, the Garmin Varia RTL515

uses RADAR blindspot detection [2]. However, in order to detect other features, another

sensor must be bought and installed in parallel to this sensor. This sensor system can also

be very costly.

In order to solve this issue, this project contains a sensor system paired with a display

dashboard to assist cyclists. The sensor system contains a small 1080p USB camera that

is placed so that it faces behind the bicycle. The display system is a 3D-printed enclosure

containing an LCD screen, an array of LEDs, and a buzzer. The LCD screen will display

the live feed coming from the rear facing camera. This video feed will then be sent into

TensorFlow Lite object detection, running on the Raspberry Pi 4. The algorithm will de-

tect vehicles and bicycles approaching the cyclist. This will then get sent to OpenCV to

perform distance calculations on these objects. If an object comes within 10 meters of the

cyclist, the user will need to be informed on the display system. The display includes

an STM32 chip mounted directly on a PCB. The STM32 microcontroller receives warning

signals from the Raspberry Pi about approaching objects. The STM32 then turns on the

appropriate LED to alert the cyclist. Along with this, a buzzer will create noise if an ob-

1

ject comes within 2 meters of the cyclist. Another feature is that there are LEDs assigned

for objects in the left and right blindspots of the cyclist. These systems together should

successfully prevent cyclists from accidents on the road.

1.2 Subsystem Overview

Our project has three subsystems. Figure 1 below shows our block diagram with these

subsystems. The first is the power subsystem with a 10Ah Lithium Polymer battery, a

5V Boost Converter, and a 3.3V linear voltage regulator. This is able to power our rear

view camera and object detection subsystem. This subsystem is responsible for capturing

the live video and displaying it on the dashboard. It is also responsible for processing

this video output. The last subsystem is the dashboard warning system. This system

contains the PCB, LEDs, STM32 microcontroller, and the buzzer. The design of each of

these subsystem is further broken down below in the Design Description section.

Figure 1: Block Diagram

2

1.3 High-Level Requirements List

Three quantitative characteristics that this project must exhibit in order to solve the prob-

lem mentioned include:

1. The system needs to be able to use a camera and display combination to show a live

rear view of the bicycle while riding.

2. Device needs to detect rear approaching objects within at least 10 meters using ob-

ject detection libraries and algorithms.

3. Device needs to be able to inform the user using LEDs and a buzzer how close a

vehicle is to the cyclist and if an object was detected in the bicycle’s blind spot.

3

2 Design

2.1 Design Description and Justification

2.1.1 Power Subsystem

The power subsystem is responsible for supplying power to our entire project. Due to

the nature of our project, various voltages are needed to power our entire system. The

power subsystem features a 10Ah Lithium Polymer battery, a unique 5V Boost Converter

built specifically for Raspberry Pi 4 based projects, and a 3.3V linear voltage regulator.

The Lithium Polymer battery will provide the power at 3.7V and with a high continuous

discharge rate of of 5A continuous. This connects through a JST connector to the Amp

Ripper 3000 Boost Converter that will supply a continuous 3A current through the USB-C

output. Using the onboard pins, it is also the 5V supply to the PCB, providing a 5V input

to the 3.3V linear voltage regulator to power our LEDs, buzzer and microcontroller.

2.1.2 Rear View Camera + Object Detection

The Rear View Camera and Object Detection subsystem is the core sensing and process-

ing part of our project. This subsystem is responsible for capturing the live video from the

rear of the bicycle, displaying the live video on our 3.5 inch display and processing the

video using complex computer vision algorithms and libraries. The subsystem features a

unique USB camera capable of filming in both day and night conditions using an IR sys-

tem. The camera will connect directly to the Raspberry Pi 4 (8GB model) to be displayed

and processed. The 3.5 inch display clearly shows the cyclist what is behind them.

The Raspberry Pi 4 includes custom algorithms for processing the video and computer

vision libraries, namely OpenCV [3] and TensorFlow Lite[4], to detect the objects behind

the cyclist. The entire process uses TensorFlow Lite to detect the vehicles, pedestrians and

other cyclists behind the cyclist and OpenCV to determine distance and location of those

objects behind the cyclist. Once the video has been processed, the Raspberry Pi 4 sends

flags over GPIO to the warning system to warn the cyclist when rear objects could be in a

dangerous position.

4

2.1.3 Dashboard Warning System

The dashboard warning system is built on a custom PCB and will feature multiple LEDs,

an STM32 microcontroller and a buzzer to warn the cyclist effectively. The STM32F103

series microcontroller has the necessary power to drive all our LEDs and buzzer as well

as connect to the Raspberry Pi through GPIO pins. The STM32F103 series supplies up to

25mA per GPIO pin and runs at a 3.3V input. Since the project features a total of 16 LEDs

of various colors (20ma), MOSFETs are used to power each set of LEDs at one time. Along

with the warning LEDs, a piezoelectric buzzer is turned on when objects are dangerously

close to the cyclist. The microcontroller controls which set of LEDs and when the buzzer

powers by using flags sent through the 5 GPIO connections to the Raspberry Pi. Finally,

to program the STM32F103 microcontroller, JTAG connections for a ST LINK-V2 are used

to quickly reprogram the processor. All of these connections can be seen in the circuit

schematic below.

2.1.4 Hardware Schematics

The following 2 3 shows the final circuit schematic connecting all major subsystems to-

gether as described above. Further images of individual parts and close ups are shown in

Appendix A below.

2.1.5 Physical Design

The physical design of the dashboard includes an entirely custom 3D printed enclosure,

made out of PLA, that will hold the Raspberry Pi 4, Amp Ripper 3000 boost converter, cus-

tom PCB and battery securely in place on the bicycle. The dashboard is securely mounted

around the front handle bars of the bicycle and its total dimensions are 7.3x6.0x5.4 inches

(236.52 cubic inches).

To secure the dashboard to the bicycle, hose clamps wrap through the open loop on the

underside of the dashboard, attaching to the cylindrical structure of the bicycle below it.

Our design also includes a quick access battery and charge port box at the bottom of the

enclosure. This was designed so that users could quickly hot swap batteries and have

5

Figure 2: Circuit Schematic

Figure 3: PCB Schematics

6

access to recharge the battery easily. Also note the square shield surrounding the USB

ports of the Raspberry Pi 4. This is used to cover the Raspberry Pi’s outputs as well as

route the USB camera cable to the rear of the bicycle.

Figure 4: Front View of Dashboard

Figure 5: Side Profile of Dashboard on Bicycle

7

Figure 6: Fusion 360 CAD Drawing

2.1.6 Software Design Raspberry Pi

The Raspberry Pi takes input from the ArduCam USB camera and performs object de-

tection before estimating the distance to the object. The image is first preprocessed by

OpenCV [3], and then is input to a pre-trained TensorFlow Lite model. The model we

used is a MobileNet V2 Single Shot Detection model [4] that was trained on COCO dataset

and additionally trained on Berkeley Deep Drive 100k dataset [5]. The model was used

8

Figure 7: Raspberry Pi Object Detection Algorithm Flow Chart

to detect objects behind the cyclist such as vehicles, pedestrians, and other cyclists with

more than 60% accuracy while keeping the video output on display to be more than 10fps.

Then in OpenCV we utilized triangle similarity [6] to estimate the distance between the

cyclist and detected objects. This process of distance estimation is explained below in the

Distance Estimation 2.2.2 section. Once the distance has been calculated, warning signals

will be generated by Raspberry Pi 4 to the STM32 IO based on the distance estimated to

be less than 2m, 5m, and 10m.

2.1.7 Software Design STM32 Software

The STM32F103C8T6 is a low cost, low power microcontroller that is used to drive warn-

ing system LEDs and buzzer on the dashboard. The STM32 HAL integrated library makes

it possible to connect to the various warning devices and to the Raspberry Pi 4 using GPIO

pins. A custom loop is ran while the system is powered on that monitors all input GPIO

from the Raspberry Pi then uses frame counters to decide which warning devices should

9

be turned on. Sensitivity code was produced to remove erroneous frame counts from

the computer vision software. This code allows for a warning that is longer sustained to

warn the cyclist of approaching vehicles. All GPIO inputs and outputs are set to source or

sink at a constant 3.3V in the HAL library code. Figure 8 highlights this decision making

process.

Figure 8: STM32 Microcontroller Software Flow Chart

2.2 Equations and Simulations

2.2.1 Operating Voltage and Current Calculations

One of our most challenging portions of this project is the power requirement. We have a

unique system that has a computer that processes live video, therefore the Raspberry Pi

4 requires a lot of power. We also have an entire other low power microcontroller that is

responsible for controlling many different warning devices. Therefore a complex analysis

of our power requirements was crucial for our success in this project.

10

The Raspberry Pi 4 requires at least 5v at 2.5A [7] with a USB device less than 500mA. In

our case, our Arducam USB camera has a maximum current of 370mA and our 3.5 inch

Touch Display has a maximum current of 120mA [8], meaning that our Raspberry Pi 4

will need a 5V power supply at least 2.5A of continuous current.

Next our STM32F103 microcontroller requires a 0.3-4V max main supply voltage at a max-

imum current of 150mA [9]. Therefore a 3.3V supply up to 150mA would be sufficient to

power our STM32F103. Each LED has a current consumption of 20mA peak a piece [10].

With 16 total LEDs, that is 320mA of total current consumption. Finally our piezoelectric

buzzer has a maximum working current of 10mA [11]. This brings our total Dashboard

Warning Subsystem current consumption to 480mA.

Another component to include in our operating voltage and current calculation is the 3.3V

linear voltage regulator. Since our requirement for our Dashboard Warning subsystem

is 480mA, the NCP1117DT33G works perfectly [12]. It has an input voltage range of

4.3V-20V and a maximum current of 1000mA. It has a maximum current consumption of

10mA, therefore this regulator will fit our requirements for the warning system.

Therefore our total current consumption for our entire project is 2985mA or roughly 3A

maximum current consumption.

Subsystem Component Input Voltage Maximum Current

Object Detection Raspberry Pi 4 (8GB) 5V 2500mA

Object Detection 3.5 Inch Display 5V 120mA

Object Detection
ArduCam USB Cam-

era
5V 370mA

Dashboard Warning STM32F103C8T6 3.3V 150mA

Dashboard Warning Super Bright LEDs 3.3V 16x20mA = 320mA

Dashboard Warning Piezo Buzzer 3.3V 10mA

Power Subsystem NCP1117DT33G 5V 10mA

Total Maximum Current Consumption: 2985mA

Total Maximum Power Consumption: 14.925W

11

The Amp Killer 3000 Boost converter can supply 5V at a continuous 3A (with sufficient cooling).

Therefore even at peak loads, the Raspberry Pi 4 will not be throttled. And it can supply the entire

project system with the necessary power.

The final component to include is the battery. The Amp Killer 3000 requires a battery that has

a 3.7V-4.2V input and at least 3000mAh capacity. We have chosen a 3.7V Lithium Polymer with

10000mAh capacity. This will be able to supply the boost converter with the correct voltage and

will have enough capacity for several hours of use, even at peak consumption.

From this analysis we learned that our power requirements are met in our system, even when

every single device is active and under peak load (a situation that should theoretically never hap-

pen). However, it is easy to see how not computing the requirements and analysing the outcome

could have had consequences to the performance of our project. For example, if the Raspberry Pi

4 does not meet its power requirements the performance will be throttled. This could cause the

object detection algorithm’s accuracy to drop and miss a moving object.

Benchmarks and power measurements results [13] can be helpful for us to estimate the power

consumption for our Raspberry Pi 4 performing object detection. Under an idling condition, the

Raspberry Pi consumes 575mA with a 5V input voltage. And the consumption peaked at roughly

885mA when loading IXDE. The 1080p video shooting power consumption was measured to be

640mA under required input voltage. Since our Raspberry Pi will be required to perform at least

480p video shooting, object detection, and video display with 10+ fps, an estimated power con-

sumption for these tasks should be about 2500mA.

2.2.2 Distance Estimation

To keep our cost low, computer vision was used to estimate objects’ distance to the cyclist, instead

of using LiDAR. The design of distance estimation algorithm has incorporated the idea from tri-

angle similarity [6]. Precisely, we used a marker with known width W, and took a picture of

the marker with some known distance D from the object, which enabled us to find the perceived

width P in pixels in the image. we calculated the focal length F of our USB camera using formula:

F = (P x D) / W because we have a ratio equation F : D = P : W due to triangle similarity when

we take pictures using a camera. The marker we used was a paper with known width w = 11.7

inches. The distance D when we took a picture for the white paper was 54 inches. Eventually, the

focal length for our camera was calculated to be 1180.

12

Figure 9: Triangle Similarity for Distance Estimation

Knowing the focal length F of our camera, we were able to estimate the other objects’ distance D’

to the camera with known object width W’, known pixel width P, and the calculated focal length F

using formula: D’ = (W’ x F) / P. Note that we used the average car width W’ = 70 inches in order

to apply this formula to estimate distance to a car. And we also used average width of a person W’

= 16 inches because our project not only detects cars, but also pedestrians and cyclists. Therefore,

we had to differentiate actual width between different captured objects.

2.3 Design Alternatives

2.3.1 Power Subsystem

As stated in the 2.2.1 our power requirements were fairly complex in this project. While spending

extra time calculating our peak power requirements helped tremendously, we still ran into power

issues when testing the project on the bike itself. We found that when running our Raspberry Pi

without any throttling of performance, the entire power subsystem would shut down and only

supply 1.0V. This initially puzzled us as all of our hardware was designed to run at peak power

13

Figure 10: Model for Object Detection

consumption. Upon further investigation we found that our 3.7V LiPo battery had an internal

BMS that would limit at a 2.5A current draw despite the battery cell itself being rated for 10A

peak current. To surpass this issue, we turned on our Amp Ripper 3000’s internal battery monitor

using its onboard microcontroller and soldered new connections to the battery. This allowed us

to pull the current we would need while still monitoring the battery’s voltage for safety concerns.

Looking back, we are happy that we accurately calculated the exact power requirements otherwise

this issue may have not been able to be resolved.

2.3.2 Computer Vision Software

Rather than training an object detection model by our own, we carefully selected an object detec-

tion model from TensorFlow [4]. The model consists a MobileNet V2 model as a backbone net-

work, and a Single Shot Detection model to perform classification and to make predictions.

The advantage that MobileNet V2 carries along with is its efficiency and performance running

on edge devices such as Raspberry Pi. It was used as a backbone network for feature extraction

in our project. Within each block of MobileNet V2, it has an expansion layer to expand the data

dimension, a depthwise layer to extract and filter features from data, and a projection layer to

compress data. With this bottleneck structure within each block, the MobileNet V2 model gave us

72% mean average precision as well as above 4.5 average fps.

14

Single Shot Detection has been used as classification network in our pre-trained object detection

model. The reason we chose SSD instead of YOLO is because SSD takes feature maps of different

sizes from many previous blocks in MobileNet V2, so that it is capable of using lower level features

for classification. Since SSD network has many convolutional layers, it is crucial that we choose a

efficient feature extractor network. This pre-trained network has been trained on COCO dataset,

and then trained on Berkeley Deep Drive 100k dataset [5], which is a dataset that covers extensive

data related to various kinds of road conditions. For example, it has information covering different

lighting condition, different weather condition, and different lane setup on the road from different

cities.

15

3 Requirements and Verifications

3.1 Power Subsystem

Requirements Verification

• The power subsystem must be able to sup-

ply at least a 2.5A continuous current out-

put and up to 3A total at peak loads.

• Apply a constant 2.5A load for 30 minutes

(time of average bike ride). Monitor that

the current stays at a constant 2.5A for all

30 minutes of operation.

• Apply a constant 3A load for 10s. Monitor

that the current stays at a constant 3A for

all 10s of operation.

• The power subsystem must be able to sup-

ply both a 5V and 3.3V output to the sys-

tem at a tolerance of ±10% each.

• Connect battery and boost converter to

the system. Check voltage using multi-

meter that no output voltage falls outside

of 5V±10% and 3.3V±10%.

• The battery must be able to be easily

recharged via USB input and will stop

when the battery reaches 4.2V. The battery

must be able to last at full charge for at least

3 hours.

• Start with battery voltage around 3.7V,

connect USB cable to charging input of

boost converter, monitor current delivered

to battery and monitor battery voltage.

Verify that the charging stops when the

battery reaches 4.2V.

• Apply constant 2.5A load and record time

it takes for battery voltage to drop under

3.7V. Verify that this time is at least 3 hours.

16

3.1.1 Results

The power subsystem was our first subsystem to test and verify since it is crucial to run and test

the other subsystems. For our first requirement, we were able to verify that we could supply 2.5A

constant for 30 minutes of operation in the lab along with a 3A load for 10s. We were also able to

find we could supply a peak of 3.5A for a few seconds since we had efficient cooling on our boost

converter. The power subsystem was also able to supply a final voltage at any battery voltage

at 5.21V and 3.33V which was within our tolerance of 10%. This was verified using the digital

multimeters in the lab. Finally, when our project was fully assembled we were able to charge the

battery in roughly 2 hours to the max voltage of 4.2V. Then we fully discharged the battery while

running the system, finding that the battery life lasted 3.44 hours. Therefore all requirements were

met.

17

3.2 Rear View Camera + Object Detection

Requirements Verification

• The Raspberry Pi 4 must be able to drive

the 3.5 inch display at a frame rate of 10fps

or higher with the live video from the rear

camera.

• Connect the rearview camera to the Rasp-

berry Pi 4 via USB connection and connect

the 3.5in display to the Raspberry Pi. Ver-

ify using the Raspberry Pi’s onboard fps

counter that the display consistently dis-

plays at least 10fps when viewing the cam-

era image.

• The Raspberry Pi must be able to use object

detection libraries and algorithms to detect

moving objects behind a cyclist and shine

the correct LED array depending at 2m, 5m

and 10m ±20% each.

• Have a pedestrian carefully run behind the

cyclist at 2m, 5m and 10m. Verify using a

multimeter, that each of the GPIO pins for

the 2m, 5m, and 10m flags send a high sig-

nal depending on the pedestrian’s location.

• The Raspberry Pi must be able to send

flagged objects to the STM32 microcon-

troller through GPIO pins.

• Have a pedestrian stand behind the cyclist

at 5m. Use a multimeter to verify that the

GPIO pin for a 5m warning is sent.

• The rearview camera must be able to cap-

ture video at a resolution of at least 480 x

380 in both day and night conditions.

• Connect the rearview camera to the Rasp-

berry Pi in both day and night conditions.

Verify that the pixel count in OpenCV for

the video is at least 480 x 380.

3.2.1 Results

This subsystem met all verification criteria fairly easily. The first requirement was verified through

the display frame counter which was set up to display the live video feed without computer vision

running. We were able to achieve an average frame rate of roughly 29 fps on 10 minutes of live

video. Even when running with computer vision we can achieve 10 fps. When testing the accuracy

18

of our distance estimation, we verified using a team member located behind the bicycle at 2m, 5m,

and 10m of distance with pedestrian tracking on. We were able to detect the pedestrian at each

level of distance at about 5-10% accuracy. We also ran this same test on a car while riding the

bicycle to verify that the the distance measurement was accurate still. Next all the GPIO was

verified using the digital multimeter in the lab that an object at 2m, 5m, and 10 would send a

GPIO signal to the STM32. Finally, the resolution of the camera was found to capture images at

a resolution of 1280x720 which exceeds our requirement of 480x380. Therefore, each requirement

was verified successfully with no issues.

3.3 Dashboard Warning System

Requirements Verification

• The STM32 must be able to source each

gate of the MOSFET to turn on each set

of LEDs: L Blind Spot, R Blind Spot, 2m

LEDs, 5m LEDs, and 10m LEDs within

500ms when conditions are met.

• Using a voltage supply, supply a 3.3V in-

put to one of the GPIO flags from the Rasp-

berry Pi to the STM32. Using a camera with

high capture rate, verify that as the input is

set the LEDs turn on within 500ms.

• Verify that when conditions are met for

the Piezoelectric buzzer to sound that the

buzzer is at least 50dB. Verify that the

buzzer is under the safe level of 120dB.

• Apply a 3.3V input to the buzzer inside

the dashboard enclosure. Using a decibel

meter, verify that the sound at the average

cyclist head level is within the bounds of

50dB and 120dB.

• Verify that when the LED warning indica-

tors are turned on, it can be seen in both

day and night conditions.

• Have a pedestrian stand behind the cyclist

at 5m in both day and night, verify that the

LED light is visible even in sunny condi-

tions.

3.3.1 Results

Each requirement in the Dashboard Warning System was also verified with no issues. All of the

STM32 GPIO pins were able to source the gate of the MOSFET for each warning device at a 3.3V

19

Figure 11: Night Condition Object Detection Verification

voltage at a response rate of 50ms even with the added sensitivity code. This was verified using

our phone camera when clicking run on the software to send the high GPIO signal as well as using

the internal clock rate of the microcontroller 72MHz and counting our loop time of roughly 1ms.

Next, the decibel measurement was found, at cyclist height with the lid on, to be 75dB which was

within our safe level. Finally, Figure 11 shows an object being detected at 5m at night in low-light

conditions without issue.

20

4 Cost and Schedule

4.1 Cost Analysis

The first calculation needed in order to determine the total cost of this project is the cost of all the

components needed to complete the project. The sum of all the components listed in the figure

below is $279.35. After this, we must calculate the labor costs associated with the project as well.

The average starting salary for a computer engineering graduate is $105,352 [2]. With a 40 hour

work week, and 52 weeks in a year, this salary equates to about $50.65/hr. The time from project

approval to the end of this course is about 12 weeks, and the team will work about 8 hours a week.

There are three members in our team. Therefore, the cost of the labor will be: $50.65/hr x 2.5 x 60

hours * 3 team members = $22792.50 This makes the total the sum of the component costs and the

labor costs: $22792.5 + $279.35. The total cost of this project is $23,071.85.

21

Description Manufacturer Quantity Cost Link

1080P Day and Night Vision USB Camera Arducam 1 34.99 Link

3.5” LCD Touch Screen Display Waveshare 1 19.80 Link

0.1” 2x20-pin Strip Dual Male Header Adafruit 1 0.95 Link

Angled Coiled Micro HDMI to HDMI Cable Twozoh 1 12.79 Link

USB 3.0 Adapter 90 Degree Male to Female

Coupler Connector
Oxsubor 1 6.99 Link

Raspberry Pi 4 Model B - 8 GB RAM Adafruit 1 75.00 Link

Green 5mm LED Adafruit 1 4.00 Link

Yellow 5mm LED Adafruit 1 4.95 Link

Red 5mm LED Adafruit 1 4.00 Link

3.7V 10000mAh 1165114 Lipo Battery

Rechargeable Lithium Polymer ion Battery

with JST Connector

AKZYTUE 1 25.99 Link

AmpRipper 3000
Kickstart De-

sign
1 24.99 Link

STM32F103CBT6TR Microcontrollers ST 1 9.19 Link

BUZZER MAGNETIC 3V 12MM TH
MallorySonalert

Products
1 4.11 Link

3.3V Linear Voltage Regulator -

NCP1117DT33G
onsemi 1 0.76 Link

N-Type MOSFET - DMG1012UW-7
Diodes Incor-

porated
6 0.38 Link

Custom-Made PCBs JLCPCB 1 18.00 Link

SD/MicroSD Memory Card (8 GB SDHC) Adafruit 1 9.95 Link

10K Ohm Resistors RC0805FR-0710KL YAGEO 10 0.10 Link

68 Ohm Resistor
Stackpole

Electronics
20 0.10 Link

15 Ohm Resistor
Stackpole

Electronics
20 0.10 Link

0.1uF Capacitor Taiyo Yuden 10 0.23 Link

10uF Capacitor YAGEO 10 0.19 Link

Figure 19: List of Parts and Costs Needed for Project

22

https://www.amazon.com/Arducam-Computer-Automatic-Switching-All-Day/dp/B0829HZ3Q7/ref=pd_day0fbt_img_sccl_1/135-9586020-7666124?pd_rd_w=8xlEI&content-id=amzn1.sym.4f1ddc71-f45e-4113-b3ab-af5a714525a1&pf_rd_p=4f1ddc71-f45e-4113-b3ab-af5a714525a1&pf_rd_r=51D9XE62946NM3R2FC3B&pd_rd_wg=pf1sy&pd_rd_r=295642e3-2152-4c74-8fcc-3b059e0542b9&pd_rd_i=B0829HZ3Q7&psc=1
https://www.ebay.com/itm/223651909405
https://www.adafruit.com/product/2822
https://www.amazon.com/dp/B09BYQQ7VY?psc=1&ref=ppx_yo2ov_dt_b_product_details
https://www.amazon.com/Adapter-Degree-Coupler-Connector-Oxsubor/dp/B0793NQRYZ/ref=sr_1_3?keywords=usb+90+degree+adapter&qid=1663655823&sr=8-3
https://www.adafruit.com/product/4564
https://www.adafruit.com/product/298
https://www.adafruit.com/product/2700
https://www.adafruit.com/product/299
https://www.amazon.com/10000mAh-1165114-battery-Rechargeable-Connector/dp/B07BTTQ6JT
https://www.kickstart-design.com/our-products/p/amp-ripper-3000
https://www.arrow.com/en/products/stm32f103cbt6tr/stmicroelectronics
https://www.digikey.com/en/products/detail/mallory-sonalert-products-inc/PB-12N23P-03Q/969790
https://www.digikey.com/en/products/detail/onsemi/NCP1117DT33G/1483318
https://www.digikey.com/en/products/detail/diodes-incorporated/DMG1012UW-7/2183239
https://jlcpcb.com/
https://www.adafruit.com/product/1294
https://www.adafruit.com/product/1294
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/RMCF0805JT68R0/1757801
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/RNCP0805FTD15R0/2240198
https://www.adafruit.com/product/1294
https://www.adafruit.com/product/1294

4.2 Schedule

Figure 20: Schedule for Project

23

5 Conclusion

5.1 Accomplishments

This project successfully met the high level requirements declared at the beginning of the semester.

The final product is able to use a combination of a camera and display to show a live rear view of

the bicycle while in motion. It also can detect other vehicles and bikes within at least 10 meters

using object detection. Lastly, the product is able to inform the user about the distance away from

approaching objects using LEDs and a buzzer, along with blindspot warnings. The subsystem

requirements for this project were also met. One requirement that is important to highlight is the

power subsystem. Because this project requires a high current load, it was important to make

sure that the power subsystem was able to supply enough current to support object detection.

This was successfully accomplished. Another subsystem requirement worth highlighting is the

object detection requirement. Accurate distance detection was an integral part of this application.

After multiple rounds of testing different object detection libraries, a library was selected that was

specifically trained for vehicles. This allowed for an accurate distance detention algorithm, which

ensured that users would accurately understand how far objects were away from them. Another

project success is the use of night vision. When the project was tested at night, it was still extremely

accurate in low light scenarios. With all of these accomplishments combined, this project was able

to be extremely successful.

5.2 Uncertainties

One uncertainty regarding the project is the sensor system’s ability to be used in all weather con-

ditions. For this sensor to be ready to be put on the market, cyclists would need to be ensured that

they could use this technology in any condition. With this in mind, the display system consists of

a waterproof, 3D-printed enclosure. However, a similar enclosure was not built for the camera.

This could lead to potential issues regarding the durability of the product. Due to this, the product

was not tested in all weather conditions. The object detection library stated that it was trained in

all weather conditions, meaning that it could detect objects in rain, snow, or hail. However, the

product was only tested in snow. After a waterproof enclosure is built for the camera, further

testing will need to occur. In the event of unsatisfactory results, the code and algorithm may have

to be adjusted.

24

5.3 Future Work and Alternatives

One thing to explore in the future is the use of LiDAR, radar, and sonar sensors. These sensors

are what traditional distance detection products on the market utilize. For example, the Garmin

Varia RTL515 discussed in the introduction utilizes RADAR distance detection. This project chose

to use a distance detection algorithm with OpenCV instead. The main reason for this was to

ensure that this product was low cost. However, it would be an important next step to explore the

difference in accuracy between the different distance detection methods. The team would have to

research if the difference between the accuracy of the different methods was enough to prevent

more accidents, and determine the best choice for the product.

Another consideration for this project is a user interface that can be utilized to adjust the sensitivity

of the warnings. In the first iteration of the product, the LEDs would flash warnings sporadically.

This was due to the object detection algorithm quickly detecting an object, and then the object

disappearing. The team then adjusted the code so that the LEDs would only flash if an object was

detected for ten frames. The LEDs would then shine for at least 5 counts. However, different users

may have different preferences as to how sensitive to warnings they would want their device to

be. A user interface where cyclists could turn down or turn up the sensitivity could help make the

product more applicable to different types of cyclists.

5.4 Ethicical Considerations

There are some ethics and safety policies that should be considered carefully. The purpose of

this project is to assist cyclists using a sensor system and a user display system to keep track of

the rearview and stability of a bike. This purpose falls under safety standards by IEEE’s Code

of Ethics Section I.1, which is “to hold paramount the safety, health, and welfare of the public. . .

and to promptly disclose factors that might endanger the public or the environment” [14]. This

project aims to assist cyclists by giving effective warnings and informing them of their status while

they are cycling. However, the system will not be able to physically assist cyclists by preventing

accidents, which means the risk of cycling will not be eliminated. Therefore, group members will

explicitly mention this to users before giving any further instruction, and this follows the IEEE’s

Code of Ethics Section I.5, which is to “acknowledge and correct errors, to be honest, and realistic

in stating claims or estimates based on available data, and to credit properly the contributions of

others”[14].

25

Furthermore, the group members working together respected each other and treated others fairly

through frequent and effective communication either in person or online. This practice follows

IEEE’s Code of Ethics Section II.2, “to not engage in discrimination based on characteristics such

as race. . . gender identity, or gender expression” [14]. Along with this, the team made sure to

follow all of the ECE lab safety rules, as stated in the university’s Laboratory Safety Training by

the Division of Research Safety.

Finally, the team followed the COVID-19 CDC Guideline when planning to meet in person to

work on the project. This falls under the COVID-19 CDC Guideline, “Reiterating that regardless

of vaccination status, you should isolate from others when you have COVID-19” [15] and “Rec-

ommending that if you test positive for COVID-19, you stay home for at least 5 days and isolate. . .

Wear a high-quality mask when you must be around others at home and in public” [15]. The team

also followed the Lab Safety Guidelines when working on PCB and circuits.

26

A Circuit and PCB Schematics

Figure 12: Voltage Regulator

Figure 13: STM32 MCU Schematic

27

Figure 14: Display Connections

Figure 15: Raspberry Pi Circuit Connections

Figure 16: Reset Switch and Power LED

28

Figure 17: LED Drivers

Figure 18: Buzzer Driver

29

References

[1] “Bicycle Safety.” (2022), [Online]. Available: https://www.cdc.gov/transportationsafety/

bicycle/ (visited on 09/14/2022).

[2] “Garmin Varia™ RCT715.” (), [Online]. Available: https://www.garmin.com/en-

US/p/721258 (visited on 09/14/2022).

[3] “Open CV.” (), [Online]. Available: https://opencv.org/ (visited on 09/28/2022).

[4] Martı́n Abadi, Ashish Agarwal, Paul Barham, et al., TensorFlow: Large-scale machine

learning on heterogeneous systems, Software available from tensorflow.org, 2015. [On-

line]. Available: https://www.tensorflow.org/.

[5] “A Diverse Driving Dataset for Heterogeneous Multitask Learning.” (2022), [On-

line]. Available: https://www.bdd100k.com/ (visited on 12/07/2022).

[6] “Distance(webcam) Estimation with single-camera OpenCV-python.” (2021), [On-

line]. Available: https://medium.com/mlearning-ai/distance-estimation-with-

single-camera-opencv-python-298a96383c2b (visited on 12/07/2022).

[7] “Raspberry Pi 4 Model B.” (2019), [Online]. Available: https://datasheets.raspberrypi.

com/rpi4/raspberry-pi-4-datasheet.pdf (visited on 09/20/2022).

[8] “3.5inch HDMI LCD.” (2022), [Online]. Available: https://www.waveshare.com/

3.5inch-hdmi-lcd.htm (visited on 09/18/2022).

[9] “STM32F103x8.” (2022), [Online]. Available: https://www.st.com/resource/en/

datasheet/stm32f103c8.pdf (visited on 09/20/2022).

[10] “Super Bright White 5mm LED.” (2022), [Online]. Available: https://www.adafruit.

com/product/754?gclid=CjwKCAjwhNWZBhB EiwAPzlhNmcI7ga2VqS-8DLy1G5JT

2It4aqkaQh0yR22mEY0RDuhuZCPVFu5xoCieIQAvD BwE (visited on 09/20/2022).

[11] “PKM22EPPH2001-B0.” (2022), [Online]. Available: https://www.digikey.com/

en/products/detail/murata-electronics/PKM22EPPH2001-B0/1219322 (visited

on 09/20/2022).

[12] “NCP1117DT33G.” (2022), [Online]. Available: https://www.onsemi.com/pdf/

datasheet/ncp1117-d.pdf (visited on 09/24/2022).

30

https://www.cdc.gov/transportationsafety/bicycle/
https://www.cdc.gov/transportationsafety/bicycle/
https://www.garmin.com/en-US/p/721258
https://www.garmin.com/en-US/p/721258
https://opencv.org/
https://www.tensorflow.org/
https://www.bdd100k.com/
https://medium.com/mlearning-ai/distance-estimation-with-single-camera-opencv-python-298a96383c2b
https://medium.com/mlearning-ai/distance-estimation-with-single-camera-opencv-python-298a96383c2b
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf
https://www.waveshare.com/3.5inch-hdmi-lcd.htm
https://www.waveshare.com/3.5inch-hdmi-lcd.htm
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.adafruit.com/product/754?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNmcI7ga2VqS-8DLy1G5JT_2It4aqkaQh0yR22mEY0RDuhuZCPVFu5xoCieIQAvD_BwE
https://www.adafruit.com/product/754?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNmcI7ga2VqS-8DLy1G5JT_2It4aqkaQh0yR22mEY0RDuhuZCPVFu5xoCieIQAvD_BwE
https://www.adafruit.com/product/754?gclid=CjwKCAjwhNWZBhB_EiwAPzlhNmcI7ga2VqS-8DLy1G5JT_2It4aqkaQh0yR22mEY0RDuhuZCPVFu5xoCieIQAvD_BwE
https://www.digikey.com/en/products/detail/murata-electronics/PKM22EPPH2001-B0/1219322
https://www.digikey.com/en/products/detail/murata-electronics/PKM22EPPH2001-B0/1219322
https://www.onsemi.com/pdf/datasheet/ncp1117-d.pdf
https://www.onsemi.com/pdf/datasheet/ncp1117-d.pdf

[13] “How much power does the Pi4B use? Power Measurements.” (2019), [Online].

Available: https://raspi.tv/2019/how-much-power-does-the-pi4b-use-power-

measurements (visited on 09/29/2022).

[14] “IEEE Code of Ethics.” (2016), [Online]. Available: https://www.ieee.org/about/

corporate/governance/p7-8.html (visited on 09/14/2022).

[15] “CDC streamlines COVID-19 guidance to help the public better protect themselves

and understand their risk.” (2022), [Online]. Available: https ://www.cdc .gov/

media/releases/2022/p0811-covid-guidance.html (visited on 09/14/2022).

31

https://raspi.tv/2019/how-much-power-does-the-pi4b-use-power-measurements
https://raspi.tv/2019/how-much-power-does-the-pi4b-use-power-measurements
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.cdc.gov/media/releases/2022/p0811-covid-guidance.html
https://www.cdc.gov/media/releases/2022/p0811-covid-guidance.html

	Introduction
	Purpose and Functionality
	Subsystem Overview
	High-Level Requirements List

	Design
	Design Description and Justification
	Power Subsystem
	Rear View Camera + Object Detection
	Dashboard Warning System
	Hardware Schematics
	Physical Design
	Software Design Raspberry Pi
	Software Design STM32 Software

	Equations and Simulations
	Operating Voltage and Current Calculations
	Distance Estimation

	Design Alternatives
	Power Subsystem
	Computer Vision Software

	Requirements and Verifications
	Power Subsystem
	Results

	Rear View Camera + Object Detection
	Results

	Dashboard Warning System
	Results

	Cost and Schedule
	Cost Analysis
	Schedule

	Conclusion
	Accomplishments
	Uncertainties
	Future Work and Alternatives
	Ethicical Considerations

	Circuit and PCB Schematics
	References

