Project

# Title Team Members TA Documents Sponsor
37 Musicians' Essential Link for Optimized Digital Instrument Connection (MELODIC)
Colin Devenney
Macrae Wilson
Ryan Libiano
Koushik Udayachandran design_document1.pdf
design_document2.pdf
final_paper1.pdf
other1.pdf
presentation1.pdf
proposal1.pdf
# MELODIC

Team Members:
- Colin Devenney (colinfd2)
- Ryan Libiano (libano2)
- Macrae Wilson (macraew2)

# Problem

A common problem associated with live performing is the rats nest of audio and control cables required to run front of house equipment, digital effects, and instruments, to name a few. However, in recent times UHF, VHF and ISM systems have taken mainstay in the industry to overcome this problem. For a large performance, a $10,000+ rack dedicated to wireless audio systems make sense. For the performing musician on a budget, such as a small house band or a coffee shop artist, current budget products (<$300) suffer from problems such as data packet collisions, limited audio quality, and lack features such as frequency hopping and diversity.


# Solution

A wireless system designed to connect two audio devices (keyboard to speaker, guitar to amp) using two MELODICs. The idea is a pair of devices using Texas Instruments’ CC8530 RF SOC’s as the microcontroller/host for peripheral devices, such as the CC2590 range extender and the TLV320AIC3204 audio codec. The main components of the system include a power subsystem using a 9V battery, an audio system (codec, control), and digital RF (CC8530, range extender). We will create two identical devices which can be used interchangeably (as master or slave).


# Solution Components

## Subsystem 1 - Power

9V battery with buck converter to account for 3.3V required for CC8530. Additionally, a linear regulator may need to be used to account for voltage rippling.

## Subsystem 2 - Audio

This includes the audio codec chip TLV320AIC3204 and buttons for controlling the power and pairing. Additionally, the TLV320AIC3204 chip communicates with the CC8530 through an I2C bidirectional bus for control processing and I2S for audio processing. The CC8530 also includes software from Texas Instruments which allows for easy programming. The TLV320AIC3204 allows for Line-in and Line-out ports for use with musical and audio devices. These will be connected to ¼ inch TRS jacks so the device can act as either a master or a slave depending on the programmed firmware.

## Subsystem 3 - Digital RF

RF processing is done through the CC8530 chip as well as the CC2590 range extender. These two chips will be coupled with a microstrip line, and associated circuitry for balancing and matching the antenna will be connected to an SMA port on the output of the CC2590 range extender. The CC8530 chip, which will manage all the peripherals over I2C and I2S digital communication protocols. The chip features a Cortex Arm-M3 Microcontroller and associated radio and audio co-processing hardware needed for the digital and analog RF front end. The chip also handles the clocking, framing and transmission of the wireless data packets as well as the clock, audio transmission and control for TLV320AIC3204 audio codec. Using Texas Instruments Configuration tool we can set the chip to autonomously run on its own, without need for control from an external master.


# Criterion For Success
-All buttons (for now, power and pairing) should work as intended.

-System should allow for monitoring power levels in each device (LEDs).

-Line-in line-out connection compatible with instruments.

-Coexistence with existing 2.4GHz protocols such as bluetooth and WLAN.

-Able to transmit lossless CD quality audio. Human-friendly enclosure with battery status LEDs and control buttons.

BusPlan

Aashish Kapur, Connor Lake, Scott Liu

BusPlan

Featured Project

# People

Scott Liu - sliu125

Connor Lake - crlake2

Aashish Kapur - askapur2

# Problem

Buses are scheduled inefficiently. Traditionally buses are scheduled in 10-30 minute intervals with no regard the the actual load of people at any given stop at a given time. This results in some buses being packed, and others empty.

# Solution Overview

Introducing the _BusPlan_: A network of smart detectors that actively survey the amount of people waiting at a bus stop to determine the ideal amount of buses at any given time and location.

To technically achieve this, the device will use a wifi chip to listen for probe requests from nearby wifi-devices (we assume to be closely correlated with the number of people). It will use a radio chip to mesh network with other nearby devices at other bus stops. For power the device will use a solar cell and Li-Ion battery.

With the existing mesh network, we also are considering hosting wifi at each deployed location. This might include media, advertisements, localized wifi (restricted to bus stops), weather forecasts, and much more.

# Solution Components

## Wifi Chip

- esp8266 to wake periodically and listen for wifi probe requests.

## Radio chip

- NRF24L01 chip to connect to nearby devices and send/receive data.

## Microcontroller

- Microcontroller (Atmel atmega328) to control the RF chip and the wifi chip. It also manages the caching and sending of data. After further research we may not need this microcontroller. We will attempt to use just the ens86606 chip and if we cannot successfully use the SPI interface, we will use the atmega as a middleman.

## Power Subsystem

- Solar panel that will convert solar power to electrical power

- Power regulator chip in charge of taking the power from the solar panel and charging a small battery with it

- Small Li-Ion battery to act as a buffer for shady moments and rainy days

## Software and Server

- Backend api to receive and store data in mongodb or mysql database

- Data visualization frontend

- Machine learning predictions (using LSTM model)

# Criteria for Success

- Successfully collect an accurate measurement of number of people at bus stops

- Use data to determine optimized bus deployment schedules.

- Use data to provide useful visualizations.

# Ethics and Safety

It is important to take into consideration the privacy aspect of users when collecting unique device tokens. We will make sure to follow the existing ethics guidelines established by IEEE and ACM.

There are several potential issues that might arise under very specific conditions: High temperature and harsh environment factors may make the Li-Ion batteries explode. Rainy or moist environments may lead to short-circuiting of the device.

We plan to address all these issues upon our project proposal.

# Competitors

https://www.accuware.com/products/locate-wifi-devices/

Accuware currently has a device that helps locate wifi devices. However our devices will be tailored for bus stops and the data will be formatted in a the most productive ways from the perspective of bus companies.