
ECE 445: Senior Design Laboratory

M.E.L.O.D.I.C Final Report

Macrae Wilson, Ryan Libiano, Colin Devenney

Team #37

Date Written: March 27, 2024

Contents

1 Introduction 3

1.1 Problem . 3

1.2 Solution . 3

1.3 High-level Requirements . 4

2 Design 5

2.1 Design Procedure . 5

2.1.1 Control . 5

2.1.2 Power . 7

2.1.3 Audio . 8

2.1.4 RF . 10

3 Results 13

3.1 Control . 13

3.2 Power . 14

3.2.1 Requirement 1: . 15

3.2.2 Requirement 2: . 15

3.2.3 Requirement 3: . 15

3.2.4 Requirement 4: . 15

3.3 Audio . 16

3.4 RF . 17

4 Ethics and Safety Considerations 19

4.1 FCC Regulations . 19

4.2 Environmental Concerns . 20

4.3 Safety Concerns . 20

5 Conclusions 20

A Code i

A.1 Arduino Code . i

2

B SPI Commands for Pairing/Reading Stats iii

C I2C Psuedo-code vi

C.1 Master Psuedo-Code . vi

C.2 Slave Psuedo-Code . viii

D Costs x

D.1 Labor Costs . x

D.2 Bill Of Materials . xi

D.3 Layouts and Schematics . xiv

1

1 Introduction

1.1 Problem

A common problem associated with live performing is the ’rat’s nest’ of audio and control ca-

bles required to run front-of-house (FOH) equipment, digital effects, and instruments. However, in

recent times UHF, VHF, and ISM systems have taken mainstay in the industry. For a large per-

formance, having a $10,000+ rack dedicated to wireless audio systems makes sense. However, for

the performing musician on a budget, such as a small house band or coffee shop artist, professional

UHF, VHF, and ISM systems are not feasible to operate. Although low-cost or used legacy sys-

tems are popular amongst amateur musicians, they often suffer from problems such as data packet

collisions from co-existing network protocols, interference from existing UHF and VHF television

bands, and/or lack of scalability or configurability.

1.2 Solution

In order to combat this, we developed M.E.L.O.D.I.C., a low-cost, scalable, configurable, and

high-fidelity wireless audio link compatible with commonly used audio equipment in the live audio

industry. We used a commercial off-the-shelf Radio Frequency System-on-Chip (RF SOC), specif-

ically the TI CC8530, commonly found in wireless headphones and karaoke systems. This chip is

an attractive choice due to its operation in the ISM band, use of adaptive frequency hopping tech-

niques for co-existence with other ISM devices, and configurable to either be an audio transmitter

or receiver. Due to the configurability and low cost of the chip, our transmitter and receiver will

have very similar circuit schematics, which will make it cheaper to manufacture multiple sets of

transmitter and receivers.

3

1.3 High-level Requirements

• The system must transmit audio that meets or exceeds lossless CD audio standards, with a

specific sampling rate of 44.1 kHz and a bit depth of 16 bits. This ensures high-fidelity sound

reproduction suitable for professional live performance contexts.

• The system must co-exist with other 2.4 GHz wireless protocols (such as Wi-Fi and Blue-

tooth) without causing or suffering from interference that degrades performance. This will be

quantitatively measured by maintaining a packet error rate (PER) below 1% in environments

populated with at least three active 2.4 GHz sources.

• The device must feature a human-friendly user interface, equipped with an LCD that displays

essential information including but not limited to battery status (with at least 10% granular-

ity), network statistics (such as signal strength and PER), and unique device identification.

This information must be easily readable under typical indoor lighting conditions from a

distance of at least one meter.

Figure 1: Block Diagram

4

2 Design

2.1 Design Procedure

2.1.1 Control

Our original desing plan was to utilize an STM32F103C8T6 Microcontroller to operate the

CC8530 in host-controlled mode. Additionally, SPI and I2C commands would be used to program

the CC8530 and the TLV320AIC3204 audio codec. Finally, a 16x2 LCD would display the following

information about each device: network statistics, battery status, and device ID. Figure 2 shows the

original GUI design flowchart. For the SPI programming, two main requests are utilized from the

CC8530 instruction set: CMD REQ and READBC. CMD REQ is used for all main programming

aspects of the RF chip. READBC reads the necessary data for the LCD and debugging. The code

for both functions is shown in the appendix.

Ultimately, our control subsystem changed the most throughout the process. Instead of using

the STM32, we used Texas Instruments’ Purepath Wireless Configurator and Commander for flash

programming and reading information required to meet the high-level requirement for the control

system. An LED was attached to a GPIO pin on the CC8530 for pairing status. A slow blinking

light means the device is alone (master unit control enable activated). A fast blinking light means

the device is in pairing mode. A solid light means the device is paired on the network. This was key

to easily determining if the devices were connected without running SPI commands. The pairing

process went as follows (references for the commands shown below are included in the appendix):

• One CC85xx is flash-programmed with Host-Controlled Master Firmware

• NWM CONTROL ENABLE is invoked by the master to begin pairing process

• NWM DO SCAN is invoked by slave, master device ID is returned

• NWM DO JOIN is invoked by slave with master ID as argument

• Use NWM GET STATUS on both master and slave to see information about current audio

network

• Use PS AUDIO STATS and PS RF STATS to see RF and Audio statistics (used in verifica-

tion)

5

Figure 2: GUI Flowchart

6

I2C commands for the codec are handled by the CC8530’s MCU. Pseudocode for these com-

mands is also shown in the appendix. With these modifications, we were able to see network

statistics and device ID for both the master and slave devices. However, we were not able to view

battery level because Vbat (pin used for reading battery level of the CC8530) was tied to ground.

Due to Texas Instruments’ Proprietary SPI interface, programming the STM32 to handle the nec-

essary SPI commands proved difficult. Figure 3 shows how the Texas Instruments SPI interface

works. When we tried to read data from the MISO bus, it always showed high even though it should

only be high shortly after CSn is pulled low. This made reading data from the CC830 impossible.

Furthermore, the ST-LINK programming interface we used didn’t include a UART bus for serial

interfacing. This forced us to use the LCD for debugging which proved less than ideal.

Figure 3: Texas Instruments SPI Interface

2.1.2 Power

The main power supply for our device is a 9V battery. This is brought down to the 3.3V that

the CC8530 RF SoC needs using a hysteretic buck converter. The buck operates using TI’s 10-V

hysteretic PFET buck controller, LM3475, which controls the switching for a custom-designed PCB

and buck circuit. This enables the system to operate consistently for an extended period, even as

the 9V battery’s charge diminishes until the battery has less than 3.3V. The LM3475 internally

contains noise suppression circuitry, however, to ensure no noise propagates through the ground

plane or interferes with the rest of the circuit we implemented external noise-dampening circuitry.

To counteract noise spikes created by trace parasitic inductance several measures were taken. First,

a small one-ohm resistor was added to the P-gate of the MOSFET. This slows the rise and fall

times of the switch and can greatly reduce these voltage spikes [1]. In addition to this a small

7

RC snub circuit was implemented in parallel to the Schottky diode to further reduce the noise.

This allows the inductor’s current to discharge in the capacitor during switching which minimizes

voltage spikes. The PCB layout of the circuit was also another critical aspect. Adequate placement

was ensured to decrease EMI problems and excess switching noise.

2.1.3 Audio

In order for compatibility with standards of the music industry, M.E.L.O.D.I.C will act as

a wireless audio cable with line-level inputs and outputs. We will be using Texas Instruments’

TLV320AIC3204 Ultra Low Power Stereo Audio Codec to convert our analog audio into digital

audio. This is done through the use of the codec’s built-in DAC. The stereo audio DAC provided

by the codec supports data rates ranging from 9khz to 198khz [2]. We choose to use PCM-16 at a

sampling rate of 48 kHz to ensure that we reach the standards of CD-quality audio.

I2C The host, whether it is the CC8530 in autonomous mode or controlled by the MCU will

configure the needed codec registers for operation. These registers control things such as input

impedance, audio format, sampling frequency, and power consumption, to name a few. [2] In order

to ensure it is configurable and usable with any type of device, we will have 2 different pin-outs for

the digital transmission protocols.

• I2C: To configure the codec registers, an I2C protocol is used. (SCL, SDA)

• Digital Pins: To reset the codec. (RES CODEC)

Power The codec features three different power supply pins. These pins are the digital blocks

source and drain voltages, the analog block source and drain voltages, and the IO source and drain

voltages. These pins require a 1.8V input, however we chose to use the 3.3V supply and step it

down to 1.8v using the internal buck converter. In order to utilize the universal 3.3V supplied to

the codec, the source pins for the digital and analog supplies are used as filtering outputs with

each filtering output tied to ground through 10 uF and 1 uF capacitors in parallel. This allows the

internal buck converters in the codec to step down the 3.3V to 1.8V without needing an external

buck converter on the board.

8

Clocks In order for us to use the codec with the transceivers master clock of 10.2475 MHz, the

codec’s clock divider must be set to certain values to ensure 48 KHz sampling rate. The clock

divider tree is shown in figure 4. The following clock divider register values are:

• NDAC/ADC = 1

• MDAC/ADC = 2

• DOSR/AOSR (Oversampling Rate) = 64

These values ensure that the ADC and DAC have a 48KHz sampling rate.

Figure 4: Clock Divider Tree

Digital Filter Another consideration we had to make was implementing a DC filter to cutoff the

DC offset from the ADC input. The transfer function of the built in device filter is:

no + n1z
−1

223 − d1 ∗ z−1
(1)

Where no = 32767 ∗ 256, n1 = −32767 ∗ 256, and d1 = 32768 ∗ 256 ∗ (1− 213). This gives a digital

high-pass filter with cutoff at approximately 1 Hz. In order to utilize the filter, we chose to use the

9

PRB P8 mode. The block diagram for the PRB P8 mode is shown in figure 5. This mode uses the

interpolation filter B whose frequency response is shown in figure 6.

Figure 5: Digital Signal Processing Block Diagram for PRB P8

Figure 6: Interpolation Filter B Frequency Response

The I2C psuedo-code used to program the codec is shown in the appendix.

2.1.4 RF

The RF subsystem mainly comprises of the CC8530RHAT Pure-Path Wireless SOC and the

Murata LFB182 Matching/Balun monolithic circuit. The RF subsystem is also be responsible for

programming the codec through it’s internal MCU and I2C interface.

10

Digital Design The digital back-end features pin-outs that are designed to mate with the other

board sub-systems through jumper cables. This design choice was made so that the CC8530RHAT

can work in autonomous mode, host-controlled mode and in production test mode [3] without

needing significant board redesigns for prototyping, characterization and final production of the

device. The chosen digital protocols that have pin-outs are:

• I2C: Used for control of the codec when in autonomous operation. The I2C lines will have

the internal pull-up resistors required for I2C operation. (SCL, SDA)

• SPI: Used to flash the transceiver when in autonomous operation, configure and read registers

when in host-controlled operation, and run included production code in production test.

When the device operates in host controlled mode, and additional interrupt request pin is

needed to interrupt SPI requests to and from the MCU [3]. (SCK,MOSI,MISO,CSn,IRQ)

In order to negate RF noise on the GPIO and I2C traces, 6.8 nH inductors were added in series.

The I2C trace also have a 2.2 kΩ pull-up resistors in shunt with the traces as per I2C electrical

requirements and 6.8 nH inductors to negate the RF noise. The I2S interface did not have pin-outs

since the digital audio interface connections are the same for both host controlled and autonomous

mode.

RF The CC8530 sees an optimum differential impedance of 70 + j30 Ω. The balun we chose,

however, is a conjugate match to this optimum load impedance. This required the differential traces

to have an impedance of Zdiff = 70Ω to ensure we have a reflection-less match. With the FR-4

board stack-up as shown in figure 7, the required board trace were found using an online calculator.

The values for a trace with a 70 Ω differential impedance is shown in figure 8.

Figure 7: Four Layer Board Stack-up

11

Figure 8: Differential Trace Geometry

Similarly, the balun has a 50Ω single-ended optimum load impedance. Since the antenna we

are using has a 50Ω impedance as-well, the single ended line needed a characteristic impedance of

50 Ω. The geometry of this trace with the given board stack-up is shown in figure 9.

Figure 9: Single-Ended Trace Geometry

Another addition that was made was an exposed copper pour with stitching vias to the inner

ground layer fencing the RF section from the other digital and analog traces on the board.

12

Power The supplies for both analog, digital and IO have decoupling capacitors. To negate high-

frequency interference from the RF section, ferrite beads were placed in series with the analog and

digital supplies. Since the codec and the transceiver are tied to the same IO supply, the ferrite

bead was not added.

3 Results

3.1 Control

Our initial requirements and verifications are shown in the table below:

Feature Verification Actions

Micro-controller successfully programs and
controls the codec and digital radio SOC’s.

1. Use static code analysis tools to ensure that
the micro-controller code is error-free and ad-
heres to coding standards.
2. Develop test cases to verify individual func-
tions of the micro-controller related to codec
and digital radio control.
3. Measure and verify the data transfer rate
and integrity of communication between the
micro-controller and the codec and digital ra-
dio SOC using a logic analyzer.

LCD shows all necessary info. 1. Conduct usability tests to ensure all nec-
essary information is displayed clearly and is
easily readable.
2. Verify the LCD refresh rate and response
time to ensure real-time updates without lag.

Buttons handle GUI navigation in the user in-
terface.

1. Perform end-to-end testing to ensure but-
tons navigate to the correct screens or perform
the correct actions.
2. Test for button durability and responsive-
ness under various conditions.

Table 1: Control/Status Verification Table

While we were not able to implement buttons, our final status operations showed all necessary

info through the Pure-Path Wireless Commander.

• Microcontroller wrote to the CC8530, but couldn’t read. Verified by sending data to the

CC8530 and seeing LED result.

• LCD turned on and displayed data, but couldn’t display necessary data from the chip (no

13

Figure 10: Physical Buck Converter

read capability). LEDs replaced the LCD for showing pairing status.

• Buttons were replaced with Purepath Wireless SPI commands, successful pairing confirmed

by reading network statistics mentioned in Design section.

3.2 Power

Our initial goals for the power subsystem are listed below in Table 2.

Requirement Verification Method

1. The buck converter must provide stable 3.3V
from the 9V battery.

Tested by voltmeter to ensure voltage stability
under various load conditions.

2. Ripple and noise on 3.3V line must be less
than 50 mV p-p.

Use an oscilloscope to measure ripple and noise
on the power line.

3. Power conversion efficiency must be at least
85% under full load.

Measure efficiency under various loads using a
power analyzer.

4. The battery must last a minimum of 5 hours
with adequate charge.

Tested by operating the device from a full
charge under normal conditions until the bat-
tery is depleted, ensuring a minimum opera-
tional time of 5 hours.

Table 2: Power Management Verification Table

Because of delays in parts and PCB orders the buck converter was never integrated on the same

PCB as the rest of the subsystems but left on its own as can be seen in fig. 10. Despite never

receiving the final PCB design the standalone buck this subsystem behaved well and operated in

the end without much error. The verification of each requirement is described below:

14

3.2.1 Requirement 1:

Three buck converters were created in total. Because of slightly differing resistances in the

feedback network and other parasitic every device had a slightly different value but stayed constant

3.3V ± 2%. Each of these was load-tested from 1 to 100mA. Their voltage remained constant

throughout this entire range and beyond. The input voltage was also swept and the voltage re-

mained constant from 11V-3.3V.

3.2.2 Requirement 2:

One of the problems with the initial PCB board design that we had to use in the end was that

it only had one 0402 pad for the output capacitor. Two or more were needed to achieve the 100µF

specified in the design. The maximum capacitance we could achieve with one pad was 47µF . The

switching frequency is dependent on the capacitance and this lowered capacitance increased the

switching frequency which also increased noise and voltage spikes. Because of an additional 47µF

was placed on the output voltage pad in between the 3.3V and ground wire. This led to a more

stable voltage and reduced the mean noise level to 37mV.

3.2.3 Requirement 3:

Power efficiency testing was performed by using several different valued resistors, measuring

the voltage across them, and reading the input voltage and current from a DC voltage generator.

The input and output were then calculated and compared. Each converter operated distinctly.

The first converter constructed was able to consistently achieve an efficiency of 82.5%. The second

that was made achieved a maximum relatively constant efficiency of 63%. The thrid behaved much

differently. It’s efficiency varied from 20% to 85% depending on the input voltage with the worst

efficiency at 6V.

3.2.4 Requirement 4:

Instead of the previously mentioned verification method of waiting for 5 hours with the device

running, we simply measured the maximum and mean draw from the MELODIC device as well as

the efficiencies for the converter described in the section above. We found the nominal current draw

15

Figure 11: PS AUDIO STATS register

from the MELODIC is 30mA, which is significantly lower than the design current. This results in

a 12mA draw from the battery at 100% efficiency or 18.3 at a more realistic 60%. This would give

30 hours of battery life from the standard 550mAh 9V battery.

3.3 Audio

Our initial goals for the power subsystem are listed below in Table 3.

Requirement Verification Method

Codec must support 48 kHz sampling rate and
16-bit depth.

Use NWM GET STATUS S to see the sam-
pling rate and PS AUDIO STATS to see if max
value reads a 16-bit word.

Input and output impedance must be 10kΩ and
600Ω, respectively.

Read the I2C register to see if register is set
correctly

End-to-end latency must not exceed 20 mil-
liseconds.

Use NWM GET STATUS S on slave to get la-
tency

Table 3: Audio Requirements Verification Table

To test the audio, we started a protocol link between slave and master, with the slave connected

to a laptop through a debugger and the master connected to a laptop through a 3.5mm stereo jack.

Using the PS AUDIO STATS register, we were able to check if the samples were being transmitted

by watching the max and mean values of the samples change as the input samples volume changed.

The test worked as expected, so the audio section did it’s job of sampling and transmitting the

signals to the transceiver. A sample of the max and mean values for an audio stream is shown in

figure 11.

• We were able to successfully transmit 44.1khz/16-bit audio from the master device to the

slave, fulfilling the requirement of CD-quality audio. The codec supported 48khz sampling

rate, but this was unnecessary for our final design.

• I2C registers were read correctly because we were able to successfully program the TLV320AIC3204

codec through the CC8530’s MCU.

16

• End-to-end latency measured at 20ms, confirmed from NWM GET STATUS

Aside from the specific requirements mentioned in the R&V table, unfortunately we were not

able to actually hear the audio transmitted on the slave device. This is due to our PER being higher

than expected. The codec automatically mutes the channel when the PER is too high, leading to

the audio not playing. We believe this is due to our inexperience in RF design. With more time,

some advice from experienced RF engineers, and another PCB revision we may have been able to

fix this issue.

3.4 RF

Since the project seeks to fix issues with interference in the ISM band, the initial requirements

for the RF section to ensure that the adaptive frequency hopping works are Table 4.

Feature Verification Actions

AFH successfully negates the effects of fre-
quency dependent interference from co-existing
ISM protocols.

1. Setup a single link in an enviroment with
other co-existing ISM protocols.
2. Using the PS RF STATS register, calculate
the ratio between packets failed and packets
attempted
3. If the ratio is greater than 25%, then AFH
has failed.

Table 4: RF Verification Table

Test The test environment, the ECEB mezzanine as shown in figure 13, was chosen since the

need for ISM coexistence was assumed. This assumption was based on student wearing Bluetooth

headphones which was continuously transmitting in the ISM band. The test setup is shown in

figure 12. Both the devices were programmed with autonomous firmware for both protocol master

and slave. The protocol master test board was connected to a laptop through a stereo 3.5mm

headphone jack. A 1000 Hz test audio was played through the laptop, with the slave receiving

these samples. In order to monitor network statistics, an SPI debugger specific to the CC85xx

series of RF SOC’s was connected to the slave board so results could be monitored with another

laptop.

17

Figure 12: Test setup for two MELODIC RF boards

Figure 13: Test environment

As seen in figure 14, after 2-3 seconds of a wireless stream, we had a PER of 8̃2.5%. This was

the root of failure for the project, as this PER meant that the samples would be muted due to the

implemented hysteretic muting.

18

Figure 14: PS AUDIO STATS register

Issues In order to debug the issue, multiple tests were conducted on the board to isolate the

issue. First, all the digital signals were tapped to see if the devices are transmitting and receiving

the expected waveform for I2S and I2C. Since these digital protocols were functioning as expected,

we decided to run another RF test and use the PS RF STATS register on the slave to see if the

samples maximum values would change proportional to the laptop’s volume. In our case this

worked as-well, which further isolated our issue to the RF section on the board. Since we did

not have a proper test setup to measure the RF section and were inexperienced in de-embedding

cascaded S-parameters between differential and single ended lines, we couldn’t properly measure

the impedance over frequency of the RF traces. Solving this issue would require a complete board

re-design, as well as proper simulations and test setups, which we did not have due to our lack of

knowledge, working RF test equipment in the senior design lab, and time.

4 Ethics and Safety Considerations

4.1 FCC Regulations

One concern with designing a digital wireless communication system was aligning with FCC

regulations and the FCC band plan. If we were to design our system around the same frequencies

as existing systems, we would need to license our device to work in that band. Specifically, UHF

and VHF equipment used in the live audio industry either have privately licensed bands with the

FCC or are licensed around the same bands as terrestrial television [4]. Since we are using an

RF SOC specifically made for wireless digital audio streaming, and it has already been tested and

approved for use in the ISM band, we do not need to worry about FCC licensing.

19

4.2 Environmental Concerns

One concern with using a 9V battery is the potential environmental damage that it might cause

when it is thrown away. We used Alkaline 9V batteries which are a safer alternative to lithium

ion batteries, which are known to have a greater negative impact on the environment when thrown

away.

4.3 Safety Concerns

We ensured that the device itself was safe to use before we demoed the project through thorough

analysis of the device’s power consumption. Mainly, all components (resistors, capacitors, SOCs,

etc.) were within their allowed power consumption tolerance.

5 Conclusions

Throughout the project our team successfully tackled challenges related to wireless audio trans-

mission interference from existing wireless protocols and integrating various electronic components.

Future improvements could focus on enhancing the user interface and expanding the devices com-

patibility with a wider range of audio equipment. Despite difficulties such as integrating the STM32

microcontroller for SPI commands we were able to adapt using the Purepath Wireless software and

deliver a successful project. Ultimately we believe that MELODIC has the potential to be a great

solution to small artists looking for a wireless alternative to their current cable-based setup.

20

A Code

A.1 Arduino Code

void sendCMD_REQ(byte commandType, byte params[], int paramSize) {

digitalWrite(PA15, LOW); // Start communication

int SW;

// Wait until MISO goes high

if(digitalRead(PB4)==HIGH){

// Read status word

byte statusHigh = SPI_1.transfer(0x00);

byte statusLow = SPI_1.transfer(0x00);

int SW = (statusHigh <<8) | statusLow;

// Send command type (assume ’11’ for the first two bits)

SPI_1.transfer(0xC0 | commandType);

// Send number of parameters

SPI_1.transfer(paramSize);

// Send parameters

for (int i = 0; i < paramSize; i++) {

SPI_1.transfer(params[i]);

}

}

i

digitalWrite(PA15, HIGH); // End communication

lcd.print(SW);

delay(2000);

lcd.clear();

}

int sendREADBC() {

digitalWrite(PA15, LOW); // Start communication

// Wait until MISO goes high

while (digitalRead(PB4) == LOW);

// Command to read byte count, assuming the command identifier is ’0xA’

SPI_1.transfer(0xA0);

// Read status word

byte statusHigh = SPI_1.transfer(0x00);

byte statusLow = SPI_1.transfer(0x00);

//SW = (statusHigh <<8) | statusLow;

Serial.print("Status: ");

Serial.println((statusHigh << 8) | statusLow, HEX);

// Read number of bytes available

byte numHigh = SPI_1.transfer(0x00);

byte numLow = SPI_1.transfer(0x00);

int numBytes = (numHigh << 8) | numLow;

Serial.print("Number of bytes: ");

Serial.println(numBytes);

ii

// Read the actual data bytes

Serial.print("Data: ");

for (int i = 0; i < numBytes; i++) {

byte dataByte = SPI_1.transfer(0x00);

Serial.print(dataByte, HEX);

Serial.print(" ");

}

Serial.println();

digitalWrite(PA15, HIGH); // End communication

return numBytes;

}

B SPI Commands for Pairing/Reading Stats

Figure 15: SPI Command for Enabling Network on Master Device

Figure 16: SPI Command for Scanning for Network on Slave Device

iii

Figure 17: SPI Command for Joining Network on Slave Device

iv

Figure 18: SPI Command for Reading Network Stats

v

Figure 19: SPI Command for Reading Audio Stats

Figure 20: SPI Command for Reading RF Stats

C I2C Psuedo-code

C.1 Master Psuedo-Code

PIN RESET

p Reset 1 # Release the reset pin

vi

RESET

w 30 00 00 # Select register page 0

w 30 01 01 # I2C reset

CLOCK SETTINGS

w 30 12 81 # Power up the NADC divider with value 1

w 30 13 82 # Power up the MADC divider with value 2

w 30 14 80 # Program OSR for ADC to 128

DIGITAL INTERFACE

w 30 1B 00 # I2S, 16-bit, BCLK and WCLK are inputs

PROCESSING BLOCK USAGE

w 30 3D 01 # Select ADC processing block PRB_R1

ANALOG POWER SUPPLY

w 30 00 01 # Select register page 1

w 30 01 08 # Disable internal crude AVDD before powering up the internal AVDD LDO

w 30 02 01 # Enable internal analog LDO, analog blocks powered

w 30 0A 40 # Common mode set to 0.75V

MICPGA DELAY, REFERENCE CHARGING AND HEADPHONE DE-POP

w 30 47 31 # MICPGA startup delay is 3 ms

w 30 7B 01 # Reference charging time is 40 ms

AUDIO ROUTING

w 30 34 40 # IN1L is routed to Left MICPGA with 10K resistance

w 30 36 40 # CM1L is routed to Left MICPGA via CM1L with 10K resistance

w 30 37 40 # IN1R is routed to Right MICPGA with 10K resistance

w 30 39 40 # CM1R is routed to Right MICPGA via CM1R with 10K resistance

DC FILTER LEFT CHANNEL

w 30 00 08 # Select register page 8

w 30 18 7F # n0 + n1 * z^-1

w 30 19 FF # H(z) = ----------------------

w 30 1A 00 # 2^23 - d1 * z^-1

w 30 1C 80 #

vii

w 30 1D 01 # The constants are defined as

w 30 1E 00 # n0 = 32767 * 256

w 30 20 7F # n1 = -32767 * 256

w 30 21 FC # d1 = 32768 * 256 * (1- 2^13)

w 30 22 00 # This gives a filter with cutoff at approx. 1 Hz

DC FILTER RIGHT CHANNEL

w 30 00 09 # Select register page 9

w 30 20 7F # n0 + n1 * z^-1

w 30 21 FF # H(z) = ----------------------

w 30 22 00 # 2^23 - d1 * z^-1

w 30 24 80 #

w 30 25 01 # The constants are defined as

w 30 26 00 # n0 = 32767 * 256

w 30 28 7F # n1 = -32767 * 256

w 30 29 FC # d1 = 32768 * 256 * (1- 2^13)

w 30 2A 00 # This gives a filter with cutoff at approx. 1 Hz

w 30 00 00 # Select register page 0

w 30 51 C0 # Power up ADC channels

w 30 52 00 # unmute ADC channels

C.2 Slave Psuedo-Code

PIN RESET

p Reset 1 # Release the reset pin

RESET

w 30 00 00 # Select register page 0

w 30 01 01 # I2C reset

CLOCK SETTINGS

w 30 0B 81 # Power up the NDAC divider with value 1

w 30 0C 82 # Power up the MDAC divider with value 2

w 30 0D 00 # Program OSR for DAC to 128 (MSB)

viii

w 30 0E 80 # Program OSR for DAC to 128 (LSB)

DIGITAL INTERFACE

w 30 1B 00 # I2S, 16-bit, BCLK and WCLK are inputs

PROCESSING BLOCK USAGE

w 30 3C 08 # Select DAC processing block PRB_P8

ANALOG POWER SUPPLY

w 30 00 01 # Select register page 1

w 30 01 08 # Disable internal crude AVDD before powering up the internal AVDD LDO

w 30 02 01 # Enable internal analog LDO, analog blocks powered

w 30 0A 40 # Common mode set to 0.75V

MICPGA DELAY, REFERENCE CHARGING AND HEADPHONE DE-POP

w 30 7B 01 # Reference charging time is 40 ms

w 30 14 65 # HP driver power-up: 50 ms soft routing step time, 5.0 time constants, 6k resistance

AUDIO ROUTING

w 30 0E 08 # LOL routing: Left channel’s DAC reconstruction filter output

w 30 0F 08 # LOR routing: Right channel’s DAC reconstruction filter output

w 30 00 01 # Select register page 1

w 30 12 00 # LOL driver: Unmute, 0 dB gain

w 30 13 00 # LOR driver: Unmute, 0 dB gain

w 30 09 3C # All output drivers powered up

w 30 00 00 # Select register page 0

w 30 3F D6 # Power up the DAC channels, normal channel routing, soft-stepping disabled

w 30 40 00 # unmute the DAC digital volume control

ix

D Costs

D.1 Labor Costs

Based on the average salary of an ECE graduate from the University of Illinois, we are assuming

a wage of $45/hr. We worked for 15 hours per week per person. The project design phase lasted

about 10 weeks. Calculating the total labor cost: 45 ∗ 15 ∗ 10 ∗ 3 = $20250.

x

D.2 Bill Of Materials

Table 5: Bill of Materials

Component Part Number Unit Price ($) Quantity Package Total Cost ($)

RF and Audio Board

Capacitors 10u 0402ZD106MAT2A 0.49 10 0402 4.99

Capacitors .47u C0402C474K8RACTU .39 5 0402 1.95

Capacitors 1.0u 04026C105KAT2A 0.49 20 0402 9.8

Capacitors 47n C0402C473J3RACTU 0.49 5 0402 2.45

Capacitor 2.2u GRM155R60J225ME01J 0.49 10 0402 4.90

Audio Jacks SJ-63053A Free 5 THT 0

Resistors 100 RC0402FR-7W100RL 0.80 10 0402 8.0

Audio Codec TLV320AIC3204IRHBT 6.29 5 VQFN-32 31.45

Capacitors 12p GRM1555C1H120JA01D 0.49 5 0402 2.45

Capacitor 220p GRM1555C1H221JA01D 0.49 5 0402 2.45

Capacitors 100n GRM155R71A104KA01D 0.49 20 0402 11.03

Ferrite Beads 28C0236-0JW-10 0.94 10 THT 9.4

SMA Connector 0733910070 Free 5 SMD Free

Inductors 6.8n LQG15HS6N8J02D 0.68 25 0402 17.0

Continued on next page

x
i

Table 5 – Continued from previous page

Component Part Number Unit Price ($) Quantity Package Total Cost ($)

Resistor 56k RK73H1ETTP5602F 0.80 5 0402 4.0

Resistors 2.2k RC0402FR-7W100RL 0.80 10 0402 8.00

Transceiver/µC CC8530RHAR 8.24 5 VQFN-40 41.2

Crystal 48MHz FA-128 48.0000MF20X-K0 0.32 5 FA-128 1.6

Monolithic Matching Circuit and BALUN LFB182G45BG2D280 .396 SMT 3.96

Power Board

Schottky Diode D1 DO-214AC 0.296 10 SMD/SMT 2.96

PFET SI2343CDS-T1-GE3 0.365 10 SMD/SMT 3.65

Capacitor 100uF GRM153R61A105ME95D 0.075 10 0402 0.75

Capacitor 22uF C0402C220J8HACTU 0.1 10 0402 1.0

Capacitor 1uF 80-C0402C105K9PAC 0.016 10 0402 0.16

Capacitor 1nF CL05B102KB5NFNC 0.013 10 0402 0.13

Resistor 1 Ohm CRM1206-FW-1R00ELF 0.077 10 SMD/SMT 0.77

Resistor 30 Ohm ESR10EZPJ300 0.077 10 SMD/SMT 0.77

Resistor 5k Ohm RT0603BRE075KL 0.094 10 SMD/SMT 0.94

Resistor 1.6k Ohm ERJ-UP3F1601V 0.082 10 SMD/SMT 0.82

Inductor 27uH CR54NP-270MC 0.674 10 SMD/SMT 6.74

Continued on next page

x
ii

Table 5 – Continued from previous page

Component Part Number Unit Price ($) Quantity Package Total Cost ($)

Buck Controller LM3475 0.61 10 SMD/SMT 6.1

Battery Clip 546-BS61 2.31 5 THT 11.55

Control Board

Buttons 474-COM-00097 0.35 15 THT 5.25

Switches R13112ABB 2.56 5 THT 12.80

µC STM32F103 Blue Pill Dev Boards 6.99 1 THT 6.99

LCD HY1602E 5.33 2 THT 10.66

LCD I2C Driver PCF8574 .74 2 SMT 1.48

Total Cost ($) 234.19

x
iii

D.3 Layouts and Schematics

Figure 21: Control Subsytem Layout

xiv

Figure 22: RF Subsytem Layout

xv

Figure 23: Power Subsytem Layout

xvi

x
v
ii

x
v
iii

x
ix

References

[1] LM3475 Hysteretic PFET Buck Controller, Texas Instruments, Oct. 2015,

sNVS239C â October 2004 â Revised October 2015. [Online]. Available:

https://www.ti.com/lit/ds/symlink/lm3475.pdf

[2] TLV320AIC3204 Ultra Low Power Stereo Audio Codec, Texas Instruments, 2019, rev. SEPTEM-

BER 2019. [Online]. Available: https://www.ti.com/lit/ds/symlink/tlv320aic3204.pdf

[3] CC85xx Family User’s Guide: RF SoC for Wireless Audio Streaming, Texas

Instruments, 2013, sWRU250M â June 2013, Revised. [Online]. Available:

https://www.ti.com/lit/ug/swru250m/swru250m.pdf

[4] Federal Communications Commission, “Title 47 CFR Part 15.247 - Operation within

the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz,” Online, 2013.

[Online]. Available: https://www.govinfo.gov/content/pkg/CFR-2013-title47-vol1/pdf/CFR-

2013-title47-vol1-sec15-247.pdf

xx

