Project

# Title Team Members TA Documents Sponsor
41 Antwieght Battle Bot Project Proposal
Anthony Shen
Batu Yesilyurt
Praman Rai
Sanjana Pingali design_document1.pdf
final_paper1.pdf
grading_sheet1.pdf
photo1.jpg
photo2.jpg
presentation1.pdf
proposal1.pdf
video
# Antweight Battlebot

Batu Yesilyurt (batuy2)

Praman (pramanr2)

Anthony (arshen2)

# Problem

Eight teams will compete with their own battlebots in a tournament. The antweight battlebots have the following constraints: Less than 2 lbs, 3D printed plastics, custom PCB that connects via bluetooth to microcontroller, motor or pneumatic fighting tool, and easy manual/automatic shutdown.

# Solution

Our plan is to be able to control and prevent the opposing robot from moving to win by decision. Controlling the opposing robot is an effective yet simple way to earn points. We plan on having arms that extend out and grab the opposing battlebot, preventing it from moving.The biggest challenge that we predict we will face is the 2 lb weight constraint. This might prevent the use of any additional features such as weapons to damage the opposing battlebot when we have it under control.

# Solution Components

## Materials

The primary purpose of our robot will be to control the enemy, this means that our robot needs to be resistant to their attacks. Most battlebots will use kinetic weapons, so we plan on using PETG because of its impact resistance.

## Control System

The controls will be managed and powered by an STM32 microcontroller, which will direct the 3 DC motors (2 drivetrain and 1 weapon) while also utilizing its embedded wireless communication. The bluetooth module will interface with an external controller (likely PC) and will enable low latency wireless control. The microcontroller will also leverage GPIO and PWM to enable precise speed control and directional control for the motors. Furthermore, we will implement an H-bridge for additional control and stabilization.

## Power System

We plan on using a 12v LiPO battery because it would provide us with lots of power for our weapons system while also being light.

## Movement System

We plan on using brushless motors to operate 2 wheels on either side of the battlebot. Our winning condition will involve pushing and controlling the other team's robot so higher torque will be more preferred over high speed motors to be able to move around the other team's battlebot. To save weight we will use a high torque motor with a fixed gear ratio. We will sacrifice speed for torque. We will also try to distribute the weight of the robot components over the wheels to maximize downforce for grip.

## Weapon System

For our weapon, we plan to utilize 2 arms that would wrap around the other robot to control and prevent it from moving. These arms will utilize a big portion of the weight budget in order to make sure they are strong enough to restrain the other robot and also take hits when not deployed.

# Criterion For Success

For a successful project, the robot should complete 3 goals. First is the remote control of the robot through bluetooth or wifi from the PC. Second the robot should automatically disable in the event the remote connection is disabled. Third the robot should drive and operate the weapon to a functional degree

Musical Hand

Ramsey Foote, Thomas MacDonald, Michelle Zhang

Musical Hand

Featured Project

# Musical Hand

Team Members:

- Ramesey Foote (rgfoote2)

- Michelle Zhang (mz32)

- Thomas MacDonald (tcm5)

# Problem

Musical instruments come in all shapes and sizes; however, transporting instruments often involves bulky and heavy cases. Not only can transporting instruments be a hassle, but the initial purchase and maintenance of an instrument can be very expensive. We would like to solve this problem by creating an instrument that is lightweight, compact, and low maintenance.

# Solution

Our project involves a wearable system on the chest and both hands. The left hand will be used to dictate the pitches of three “strings” using relative angles between the palm and fingers. For example, from a flat horizontal hand a small dip in one finger is associated with a low frequency. A greater dip corresponds to a higher frequency pitch. The right hand will modulate the generated sound by adding effects such as vibrato through lateral motion. Finally, the brains of the project will be the central unit, a wearable, chest-mounted subsystem responsible for the audio synthesis and output.

Our solution would provide an instrument that is lightweight and easy to transport. We will be utilizing accelerometers instead of flex sensors to limit wear and tear, which would solve the issue of expensive maintenance typical of more physical synthesis methods.

# Solution Components

The overall solution has three subsystems; a right hand, left hand, and a central unit.

## Subsystem 1 - Left Hand

The left hand subsystem will use four digital accelerometers total: three on the fingers and one on the back of the hand. These sensors will be used to determine the angle between the back of the hand and each of the three fingers (ring, middle, and index) being used for synthesis. Each angle will correspond to an analog signal for pitch with a low frequency corresponding to a completely straight finger and a high frequency corresponding to a completely bent finger. To filter out AC noise, bypass capacitors and possibly resistors will be used when sending the accelerometer signals to the central unit.

## Subsystem 2 - Right Hand

The right subsystem will use one accelerometer to determine the broad movement of the hand. This information will be used to determine how much of a vibrato there is in the output sound. This system will need the accelerometer, bypass capacitors (.1uF), and possibly some resistors if they are needed for the communication scheme used (SPI or I2C).

## Subsystem 3 - Central Unit

The central subsystem utilizes data from the gloves to determine and generate the correct audio. To do this, two microcontrollers from the STM32F3 series will be used. The left and right hand subunits will be connected to the central unit through cabling. One of the microcontrollers will receive information from the sensors on both gloves and use it to calculate the correct frequencies. The other microcontroller uses these frequencies to generate the actual audio. The use of two separate microcontrollers allows for the logic to take longer, accounting for slower human response time, while meeting needs for quicker audio updates. At the output, there will be a second order multiple feedback filter. This will get rid of any switching noise while also allowing us to set a gain. This will be done using an LM358 Op amp along with the necessary resistors and capacitors to generate the filter and gain. This output will then go to an audio jack that will go to a speaker. In addition, bypass capacitors, pull up resistors, pull down resistors, and the necessary programming circuits will be implemented on this board.

# Criterion For Success

The minimum viable product will consist of two wearable gloves and a central unit that will be connected together via cords. The user will be able to adjust three separate notes that will be played simultaneously using the left hand, and will be able to apply a sound effect using the right hand. The output audio should be able to be heard audibly from a speaker.

Project Videos