

Team 41 Antweight Battlebot

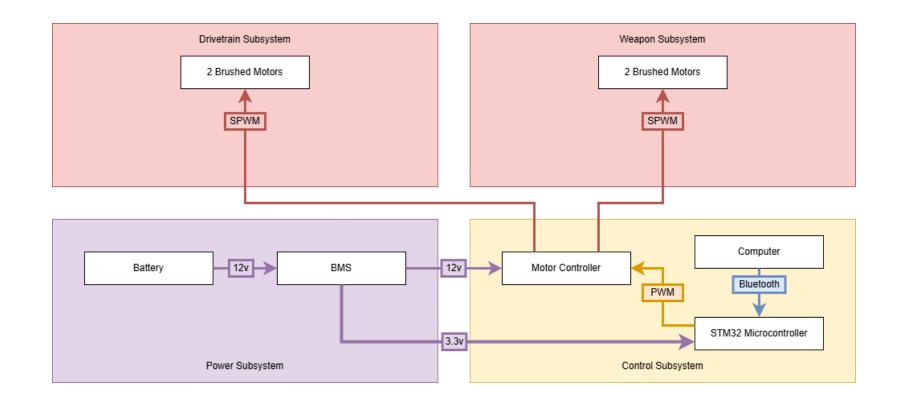
Electrical & Computer Engineering

5/6/2025

Battlebot Competition and Rules

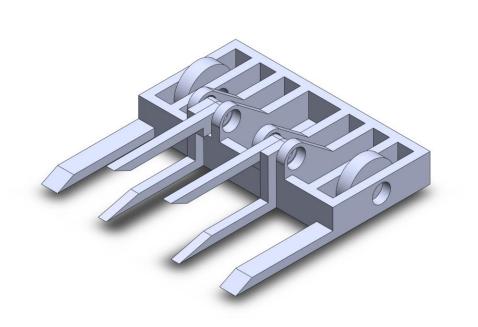
Battlebot Competition

- 6 teams compete in a bracket elimination tournament
- 2 battlebots will be placed in a 10 ft x 10 ft walled-off arena for 2 minutes
- Win by disabling the opposing enemy robot or controlling them throughout the match


Rules

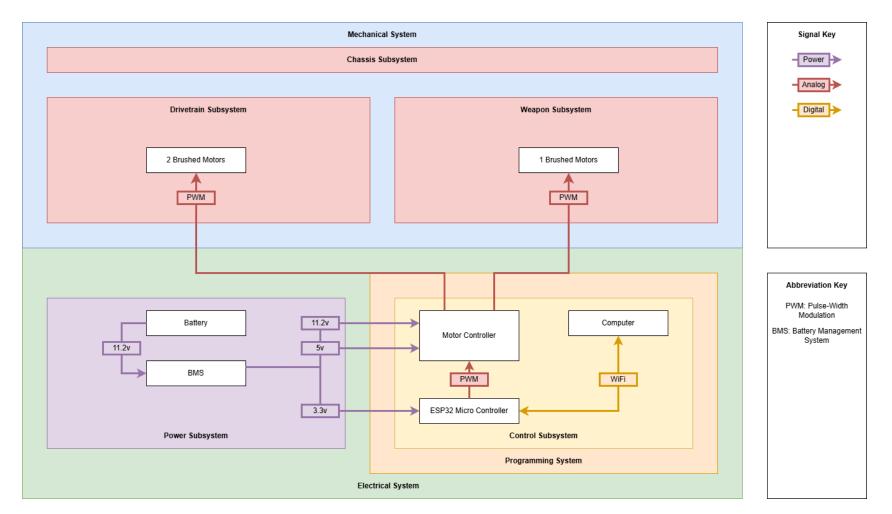
- Battlebot must be less than 2 lbs.
- Battlebot will be 3D printed using these materials: PET, PETG, ABS, or PLA, PLA+
- Battlebot will have a custom PCB
- Battlebot will be controlled from the PC via a Bluetooth or wifi
- Other rules and constraints are detailed in the National Robotics Challenge 2025 Contest Manual

Initial High-Level Requirements


- The remote control of the robot is through bluetooth/Wi-Fi within a 10ft range.
- The robot should automatically disable within 500ms of the connection being lost.
- The robot should drive at a speed of at least 10 ft/s and operate a lifter weapon capable of lifting at least 2 lbs.

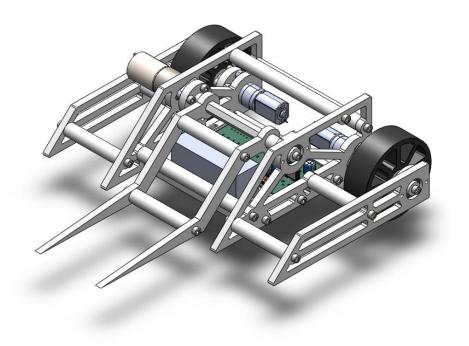
Initial Solution

Initial Solution Block Diagram



High Level Design Decisions

- 2 Wheeled Drivetrain
 - Front rests on the ground, allows robot to get underneath opponent more easily
- 2 Arm Lifter Weapon
 - At weight class and material restriction, control robot more effective


Final Solution: Overview

Final Solution: Block Diagram

Final Solution Block Diagram

High Level Design Changes

- 1 Arm Lifter Weapon
 - Similar level of effectiveness
- Plate and Spacer Contruction

 Allows for stronger sidewalls
 Modularity

High Level Requirements

- Remote Control of the robot within at least a 15ft range
 Reasonable distance between operator outside the arena and robot in arena
- The robot should automatically disable within 500ms of the connection being lost

 $_{\odot}$ Safety in the event the robot loses connection

- The robot should drive at a speed of at least 5 ft/s and operate a lifter weapon capable of lifting at least 2 lbs.
 - $_{\odot}$ Reasonable speed for an arena size of 10 ft x 10 ft
 - Capable of lifting max enemy robot weight

Mechanical Design Considerations

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Considerations

• ABS

- o Lightweight
- \circ Durable
- $_{\odot}$ Difficulty in printing remedied by Bambu X1C

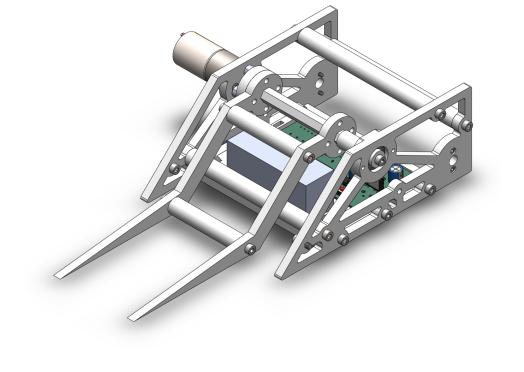
Brushed Motor

- Implementation Simplicity
- \circ Instant Torque

Final Solution: Drivetrain

Drivetrain Design

- 3" 50 A Durometer Wheels
 - Balance between hardness and compliance to provide good traction
- 508 RPM Motor
 - Provides enough rotational speed to reach at least 5 ft/s for good maneuverability
 - Provides at least 0.1 ft-lbs for good pushing power


Drivetrain Subsystem	
Requirements	Test and Results
Minimum top speed of 5 ft/s	Used timer and tape measure to compute v = d/t Average Speed: 5.32 ft/s
Minimum 0.1 ft-lbs. torque per wheel	Used jig to press motor output to scale Stall Torque: 0.168 ft-lbs.

Final Solution: Weapon

Weapon Design

- Configurable Prongs
 - Different prong designs to adapt to enemy opponent
- Self-righting Capable
 - Allows the robot to self-right in the event it is flipped over
- 56 RPM Motor
 - $_{\odot}$ Provides enough torque to lift 2 lbs.
 - Provides enough rotational speed to lift enemy in less than 1 second

Γ
Ч

Weapon Subsystem	
Requirements	Test and Results
Minimum 1.333 ft-lbs. torque at the lifting points	Used jig to press motor output to scale Stall Torque: 4.48 ft-lbs.
Fully extended arm length and chassis length must be within 13" size limit	Measured with Tape measure Passed
Lifting mechanism must raise opponents a minimum 2 inches from ground	Passed, lift height depends on arm configuration

Weapon Subsystem	
Requirements	Test and Results
Must complete full deployment motion within 1 second	Tested with Timer Average Deployment Time: 0.86 seconds
Self-righting capability must function when robot is flipped over	Passed
Arms must withstand impact force of 20 N without structural failure	Passed

Challenges

- High Torque Sheared the 3D Printed Axle Under Load
 - $\circ\,$ Directly attached prong to the hub
 - $\,\circ\,$ Axle now serves to stabilize the lifting motion
- Gearbox Gears Sheared During Control Subsystem Test

 $_{\odot}$ Gearbox is still within specifications to lift 2 lbs.

PCB Design Considerations

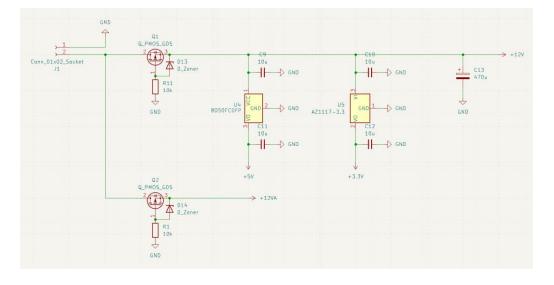
Considerations

Trace Width Considerations

o 4 A Peak Current

 \circ 2 oz copper

Heat Dissipation


Spread significant heat generating components across PCB

Final Solution: Power

Power Design

- 50C 2.2Ah 3s LiPo
 - \circ Peak 110 A output
 - Power for whole competition
- Reverse Polarity Protection
- 3.3v Output
 - Stable 3.3v for microcontroller
- 5v Output
 - Stable 5v for motor controller
- 12v Output
 - \circ 12v for motor controller
- Individual Fuses For Each 12v Output
 - $\circ~$ Overcurrent protection does not disable other systems

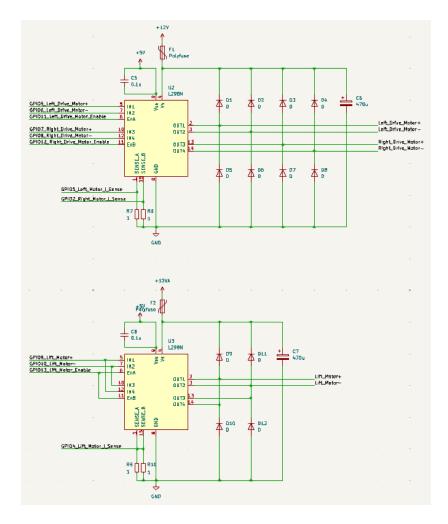
Γ
5

Power Subsystem	
Requirements	Test and Results
Voltage regulation must maintain 3.3V ±5% for microcontroller	Tested with Multimeter
under all load conditions	Maintains 3.3V±0.2%
Battery management system (BMS) must supply sufficient	Determined by battery specs
current to the robot for 2 mins	Passed

-0

Challenges

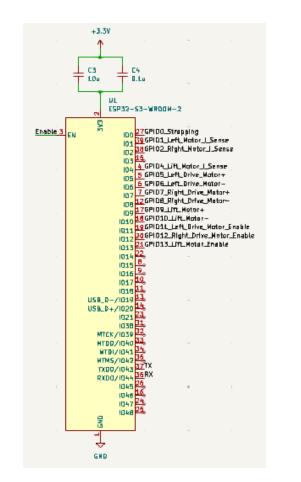
- Original 3.3v LDO For STM 32 Not Rates For ESP 32
 - Did not account for additional current draw from onboard wifi of the ESP 32
 New LDO provides sufficient current


12v to 3.3v LDO High Power Loss as Heat

Possible reason for loss of first PCB
 Added heat sinks to help dissipate heat

Final Solution: Control

Control: Motor Controller Design



Motor Controller Design

- Drivetrain
 - o 2 A Continuous Current
- Weapon
 - 4 A Continuous Current
- Flyback Diode Network
 - Prevent flyback events from the inductive effects of the motors

Control: Micro Controller Design

Micro Controller Design

- Wifi Remote Control
 - Use the ESP 32 as an access point for low latency
 - Creation of customizable UI
 - through HTML to control the robot
- ADC Current Sensing
 - Setup, Not Implemented

٦	Γ
ل م	5

Control Subsystem	
Requirement	Test and Results
Wifi communication must	Inherent properties of 2.4 GHz
maintain stable connection at 15-foot range	Passed
Emergency stop must trigger	Timer created within code
within 500 ms of signal loss	Average Emergency Stop Time: 138 ms
Motor controller can temporarily	Passed
supply max stall current to the motors	

Challenges

- Difficulties With STM 32 Serial Bluetooth Controller
 - Not able to setup a heartbeat mechanism to check for user connection
 - $_{\odot}$ Ultimately lead to the switch to the ESP 32

Final Solution: Conclusion and Further Work

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Skills Learned

- Mechanical
 - \circ SolidWorks
 - Manufacturing Tolerance
- Electrical
 - \circ KiCad
 - $_{\odot}$ Soldering and Baking
 - $_{\odot}$ Debugging and Testing
- Software
 - o Arduino IDEo HTML

(-X+)

ARDUINO

Changes

- Planetary Gearboxes
 - Broken gearbox during stall test
 Allow robot to handle stall torque
- Buck Converter Before LDO
 - 12v to 3.3v LDO high power loss in form of heat
 - $_{\odot}$ Possible damage from heat
- Modular Side Plates

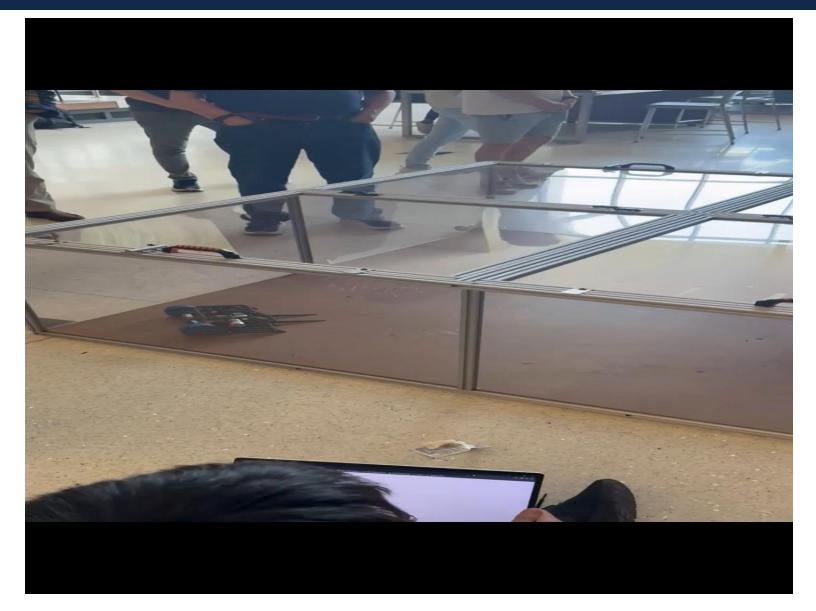
Future Work

- Joystick Control
 - Prototype implemented
 - More precise control of robot
- Current Sense
 - Act as limit switch to prevent damage to arm when at extension limits
- Brushless Motor

Ethics

Ethics

Safety Risks to Participants & Spectators


- $_{\odot}$ Strict arena safety standards
- $_{\odot}$ Emergency stop in the event of a disconnection
- Fair Competition & Cheating
 - $_{\odot}$ Inspection of robot to strict adherence of rulebook
- Promotion of Responsible Engineering

Balance destruction with innovation

Performance

Performance

Thank You!