Project

# Title Team Members TA Documents Sponsor
9 Antweight Battlebot
Allan Gu
Evan Zhao
James Yang
Michael Gamota design_document1.pdf
final_paper1.pdf
grading_sheet1.pdf
presentation1.pdf
proposal1.pdf
video
# Antweight Battle Bot

Team Members:
- Evan Zhao (evanhz2)
- Allan Gu (allang2)
- James Yang (jamesey2)

# Problem

We must create a Battlebot that weighs less than 2 lbs out of 3D printed materials in order to compete with other battlebots. It must be controlled through Bluetooth or Wi-Fi and be able to be easily shut down. In order to win in the competition, the robot must be robust and capable of destroying the opposing robot, while withstanding damage from other competitors.

# Solution

Our battlebot will be 3D printed with PLA+ and use a vertically spinning disk as our weapon. It will have a 4-wheel drive and be controlled via Bluetooth with an ESP32 microcontroller. This MCU will use PWM to control the H-bridges for motor activation and take in user inputs from a computer.

# Solution Components

## Control System
We plan to use an ESP32 for our MCU, as it has built-in Bluetooth and Wi-Fi capabilities. The battlebot will use Bluetooth to connect and communicate with a computer and a wired controller can be used with the computer to provide more inputs like varying speeds using the joystick. The controller will have a killswitch button for safe shutdown. The ESP32 has a variety of GPIO pins, which can support PWM. This will be used to control the H-bridges for motor speed and direction.

## Power System
For our robot’s power system, we intend to use a 4S LiPo (~14.8 nominal voltage, ~16.8 charged voltage). We chose LiPo as it is a standard in most combat robotics applications for its high power density and ability to discharge lots of charge quickly which is seen a lot in the combat space with high-power weapons and drive motors. Since ESP32 and other modules that we may use do not typically operate at this voltage, we will also need voltage converters and regulators to supply the appropriate power to these sub-modules (typically 3.3V and 5V).

## Movement System
Our combat robot will utilize a four-wheel drive with two brushless or brushed motors on either side of the chassis each driving 2 wheels in a tank-drive configuration. For a brushless configuration, we are considering brushless 1406 motors (https://repeat-robotics.com/buy/repeat-tangent-drive-motors/?attribute_motor-size=1406) that will provide us with plenty of power and torque for a relatively low-cost in weight. A 3-phase inverter will be needed to control the BLDC motors. If we chose brushed motors instead, we would use Repeat Drive Brushed Mk2 (https://repeat-robotics.com/buy/brushed/) which comes with an integrated gearbox and would be simpler to electrically implement than a brushless system at the cost of being less powerful and fast. The motors would be controlled with H-bridges and GPIO from the ESP32.

## Weapon System
The weapon will be some kind of vertically rotating 3D-printed weapon driven by a brushless 2207 Battle Ready Hub Motor (https://repeat-robotics.com/buy/2207-battle-ready-hubmotor/). This motor is known to be reliable and durable for battlebots. Similar to the four-wheel drive motors, we will also need a 3-phase inverter to control the BLDC motor phases.

# Criterion For Success

It would be considered successful if the movement of the robot can be controlled via Bluetooth from a PC and it can function how we would desire within a match such as turning to face the opposing robot and ramming into it with the weapon. The weapon should also be controllable and powerful enough to damage 3D-printed material while maintaining its structural stability.

Bracelet Aid for deaf people/hard of hearing

Aarushi Biswas, Yash Gupta, Anit Kapoor

Bracelet Aid for deaf people/hard of hearing

Featured Project

# PROJECT TITLE: Bracelet Aid for deaf people/hard of hearing

# TEAM MEMBERS:

- Aarushi Biswas (abiswas7)

- Anit Kapoor (anityak3)

- Yash Gupta (yashg3)

# PROBLEM

We are constantly hearing sounds around us that notify us of events occurring, such as doorbells, fire alarms, phone calls, alarms, or vehicle horns. These sounds are not enough to catch the attention of a d/Deaf person and sometimes can be serious (emergency/fire alarms) and would require the instant attention of the person. In addition, there are several other small sounds produced by devices in our everyday lives such as washing machines, stoves, microwaves, ovens, etc. that cannot be identified by d/Deaf people unless they are observing these machines constantly.

Many people in the d/Deaf community combat some of these problems such as the doorbell by installing devices that will cause the light in a room to flicker. However, these devices are generally not installed in all rooms and will also obviously not be able to notify people if they are asleep. Another common solution is purchasing devices like smartwatches that can interact with their mobile phones to notify them of their surroundings, however, these smartwatches are usually expensive, do not fulfill all their needs, and require nightly charging cycles that diminish their usefulness in the face of the aforementioned issues.

# SOLUTION

A low-cost bracelet aid with the ability to convert sounds into haptic feedback in the form of vibrations will be able to give d/Deaf people the independence of recognizing notification sounds around them. The bracelet will recognize some of these sounds and create different vibration patterns to catch the attention of the wearer as well as inform them of the cause of the notification. Additionally, there will be a visual component to the bracelet in the form of an OLED display which will provide visual cues in the form of emojis. The bracelet will also have buttons for the purpose of stopping the vibration and showing the battery on the OLED.

For instance, when the doorbell rings, the bracelet will pick up the doorbell sound after filtering out any other unnecessary background noise. On recognizing the doorbell sound, the bracelet will vibrate with the pattern associated with the sound in question which might be something like alternating between strong vibrations and pauses. The OLED display will also additionally show a house emoji to denote that the house doorbell is ringing.

# SOLUTION COMPONENTS

Based on this solution we have identified that we need the following components:

- INMP441 (Microphone Component)

- Brushed ERM (Vibration Motor)

- Powerboost 1000 (Power subsystem)

- 1000 mAh LiPo battery x 2 (hot swappable)

- SSD1306 (OLED display)

## SUBSYSTEM 1 → SOUND DETECTION SUBSYSTEM

This subsystem will consist of a microphone and will be responsible for picking up sounds from the environment and conducting a real-time FFT on them. After this, we will filter out lower frequencies and use a frequency-matching algorithm to infer if a pre-programmed sound was picked up by the microphone. This inference will be outputted to the main control unit in real-time.

## SUBSYSTEM 2 → VIBRATION SUBSYSTEM

This subsystem will be responsible for vibrating the bracelet on the wearer’s wrist. Using the vibration motor mentioned above, we should have a frequency range of 30Hz~500Hz, which should allow for the generation of a variety of distinguishable patterns. This subsystem will be responsible for the generation of the patterns and control of the motor, as well as prompting the Display subsystem to visualize the type of notification detected.

## SUBSYSTEM 3 → DISPLAY SUBSYSTEM

The Display subsystem will act as a set of visual cues in addition to the vibrations, as well as a visual feedback system for user interactions. This system should not draw a lot of power as it will be active only when prompted by user interaction or by a recognized sound. Both of these scenarios are relatively uncommon over the course of a day, which means that the average power draw for our device should still remain low.

## SUBSYSTEM 4 → USER INTERACTION SUBSYSTEM

This subsystem is responsible for the interaction of the user with the bracelet. This subsystem will include a set of buttons for tasks such as checking the charge left on the battery or turning off a notification. Checking the charge will also display the charge on the OLED display thus interacting and controlling the display subsystem as well.

## SUBSYSTEM 5 → POWER SUBSYSTEM

This subsystem is responsible for powering the device. One of our success criteria is that we want long battery life and low downtime. In order to achieve this we will be using a power boost circuit in conjunction with two rechargeable 1000 mAh batteries. While one is charging the other can be used so the user doesn’t have to go without the device for more than a few seconds at a time. We are expecting our device to use anywhere from 20-50mA which would mean we get an effective use time of more than a day. The power boost circuit and LiPo battery’s JST connector allow the user to secure and quick battery swaps as well.

# CRITERION FOR SUCCESS

- The bracelet should accurately identify only the crucial sounds in the wearer’s environment with each type of sound having a fixed unique vibration + LED pattern associated with it

- The vibration patterns should be distinctly recognizable by the wearer

- Should be relatively low cost

- Should have prolonged battery life (so the power should focus on only the use case of converting sound to vibration)

- Should have a small profile and a sleek form factor

Project Videos