

Antweight Battlebot

Electrical & Computer Engineering

Team 9: Allan Gu, James Yang, Evan Zhao TA: Michael Gamota Professor: Viktor Gruev

May 6, 2025

Professor Gruev's Antweight Battlebot Competition

Rules:

- Must be 3D printed with PET, PETG, ABS, PLA, or PLA+
- Less than 2 lbs
- Wirelessly controlled
- Have a "fighting tool"
- Safety shutdown switches

High Level Requirements

- Bluetooth latency must be less than 1000 ms
- Robot must have a minimum speed of 3 mph
- Weapon must be capable of lifting 2 lbs

Block Diagram

New Design

Old Design

- Switched from brushless controllers and motors to brushed
- 4S to 3S LiPo battery

PCB Design - Controller PCB

PCB Design - Motor PCB

Controller Subsystem

Bluetooth Low Energy

Bluetooth Low Energy Data Flow:

- Configures the BLE stack on ESP32-S3 using NimBLE and sets it as the server
- Establishes a connection using Bleak, with the PC acting as the client
- Writes joystick and button data to designated BLE characteristics
- Reads new characteristic data on ESP32-S3 and determines output PWM

Arcade Drive

• One axis controls speed and the other controls rotation

Ι

Requirement:

 ESP32 must connect to PC via Bluetooth Low Energy with a latency of less than 1000 milliseconds

Verification:

 Connect a PWM pin from the ESP32 to an oscilloscope and measure the time it takes to change when given an input from the controller

Result:

After three trials, the average latency was 135
milliseconds

Requirement:

 Must send PWM signal with ± 10% accuracy corresponding to controller speed input

Verification Results:

- Average 0.88% error
- Maximum 2.35% error

11

ר ר

Fingertech Power Switch Easy manual shutdown

Requirement: Provide power for 2 entire 2 minute match duration and not drop below 9.6 V

Before (Fully Charged)

After 2 minutes

Buck Converter

81	100mV/	2	3	4	200.0ns/	0.0s	Auto	5 1 325V ET
3.65V			-					# Meas # 🗐
3.55								Freq(1):
3.45								Pk-Pk(1):
3.35								
Tandan								
3.15								
3.05							N. Comp	
2.95								
	-900m							
Measurem	ent Menu Add Meac	-400r		010	400n	800	ns.	

LMR51430

- Steps down 3S (11.1 V nominal) to 3.3 V
- Up to 3 A output

Requirement: Provide Stable 3.3 $V \pm 0.3V$

Results:

- Average: 3.25 V
- Ripple: 88 mV

ר ו

DRV8871

- 3.6 A output limit
- 2 PWM inputs

Requirement: Must be able to reach 3 mph

Measured 3.24 mph at max speed

Requirement: Movement must stop within 3 seconds of Bluetooth disconnect

Requirement: Robot can drive or flip itself upright if knocked upside-down

Weapon Subsystem

Weapon

Requirement: Weapon must be able to lift 2 lbs

Requirement: Weapon must stop within 10 seconds of losing Bluetooth connection

Mechanical Subsystem

Previous Design

Final Design

Drive Subsystem

Weapon Subsystem

Minimum Lifting Torque:

Given:

Gear Reduction: **30:1** (Worm Gear to Green Gear 30:1)

0.907 kg

150

25

- Lifting Mass: 0.907 kg (2 lbs) •
- Arm Length: **15 cm** (150 mm) ٠

We Find:

Torque \geq M*L / Reduction = 0.907 * 15 / 30

Minimum Torque ≥ 0.4535 kg*cm

Motor Provides 1.7 kg*cm¹ of sustained torque.

Performance at maximum efficiency

Max efficiency @ 12V:	29 %
Speed at max efficiency:	60 rpm
Torque at max efficiency:	1.7 kg·cm
Current at max efficiency:	0.30 A
Output power at max efficiency:	1.0 W

Source: Pololu 20D Gearmotor

Electronics Packaging

GRAINGER ENGINEERING

Requirements and Verifications

Requirement:

Chassis must be able to protect electronics and be capable of handling external impacts from opponents to a reasonable degree.

Result:

No electronics exposed. No wires or battery found to be hanging out of robot

Requirement:

Robot weighs no more than 2 pounds.

Result:

Weight registered of 1 lb and 11.6 oz.

Successes and Challenges

- Could not connect to ESP32
 even with MAC address
- Random BLE disconnects
- Joystick mapping
- Tuning brushless controllers
- Got destroyed by Roomba battlebot

Stable and recoverable BLE connection

- Weapon is able to lift and maneuver objects up to 2 lbs
- Meets all requirements
- Beat another lifting robot in the competition

What did we learn:

- BLE stack and data transmission
- PCB design and layout

What would we do differently:

Start out planning on using brushed DC motors

Recommendations for further work:

- Reduce latency by switching to ESP-NOW or tuning the delays
- Spend more time tuning motor drivers for brushless DC motors
- Fine tune arcade drive for driver preference

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

