Project

# Title Team Members TA Documents Sponsor
44 Self Heating Bed
Amaan Rehman Shah
Hari Gopal
Siddharth Kaza
Jialiang Zhang design_document1.pdf
final_paper1.pdf
other1.jpeg
photo1.jpeg
photo2.jpeg
presentation1.pptx
proposal2.pdf
video
# Self Heating Bed

Team Members:
Siddharth Kaza (kaza3)
Amaan Rehman Shah (arshah6)
Hari Gopal (hrgopal2)

# Problem

Many prefer a fan or heater next to their bed, so as to get a restful night’s sleep. Certain solutions such as the BedJet or EightSleep have been produced, but are financially out of scope for the majority of people. Additionally, standing ventilation systems can often be loud or not provide temperature control for the entire bed, leaving a non-uniform warmth or coolness which may become uncomfortable over time.

# Solution

A heating mattress is our answer to the many who feel uncomfortable with frigid temperatures in the middle of winter. The system would be an attachment to one’s bed frame (through clamps), with hot air circulating through bed sheets to simulate a warmer environment. Four splits can be made for this project: heating, circulation, and safety. Each will be expanded on below.

# Solution Components

## Subsystem 1

We intend on implementing heating using independent and smaller heating coils, due to their cost effectiveness compared to the circulatory system in most apartments and houses. This coil is usually a resistor in most heating systems, coupled into an electric system where more power sent through the resistor results in more heat being dissipated. An infrared heater is potentially another option, but considering the space is a bit larger than what infrared is meant to hit, coils seem like the better choice. McMaster sells heat coils for around 30-40 dollars, at this link: https://www.mcmaster.com/products/heating-coils/. To measure the temperature, we will use a thermometer at the output
At the moment, we believe it is too complex/expensive to implement a cooling system for the bed; however, we’d like to discuss the idea further with a TA to understand the components needed and finalize it in our proposal. In the current implementation, we would be venting room temperature air underneath the covers, which can still serve to reduce the temperature similar to a tower fan.

## Subsystem 2
Circulation is an issue even in conventional air conditioning systems, which makes its implementation all the more pertinent in our project. Through a fan or air blower, we can circulate air under the blankets and bed sheets to increase the temperature of the bed without having the problems of Eight Sleep (leakage issues, temperature mismatches, etc.). Additionally, we intend on giving the user control of this function through a motor control system and receiver implemented on our PCB. Easy access and variability through an app or remote of some sort will most certainly satisfy user expectations and leave a good experience. This speed controller from Amazon is an example of what will be used to modulate the fan power. https://www.amazon.com/Controller-Adjustable-Portable-Interface-Accessories/dp/B0D2BJV1KY

## Subsystem 3
Safety and power are the last two issues, and largely hinge on limits that we need to implement on the heating system. The coils that we buy will likely have a wattage rating that we can abide by, and set hard limits for using fuses within the system and on the PCB. Furthermore, checks and balances will be made for the power system through multiple voltage valuations and current examinations, feeding back to the main controller on the PCB and allowing us to monitor the system at all times. A potential option for the feedback system is PID based, as it provides the most flexibility and has been tested numerous times in other projects. The feedback system will be core to how we control our fan and heating, and will require fine tuning at the end of our project to ensure that we stay within safe operating temperatures.
# Criterion For Success

Describe high-level goals that your project needs to achieve to be effective. These goals need to be clearly testable and not subjective.

Our project should:
Be able to modulate the temperature of its surroundings (defined as the temperature within a square box of the bed) within 3 degrees Fahrenheit of what the user inputs

Have a quiet air ventilation system, measured around 50-60 decibels (when sleeping, noise around one should not exceed 50)

Not power hungry and able to subsist off of the wattage of a normal fan or heater (1500W)

Antweight Battlebot Project

Jeevan Navudu, Keegan Teal, Avik Vaish

Antweight Battlebot Project

Featured Project

# Antweight Battlebot

Team Members:

- Keegan Teal (kteal2)

- Avik Vaish (avikv2)

- Jeevan Navudu (jnavudu2)

# Problem

In order to compete in Professor Gruev’s robot competition, there are many constraints that need to be met, including:

- Maximum weight (2lbs)

- Allowed materials (3D-printed thermoplastics)

- Locomotion system and fighting tool

- Wireless control via Bluetooth or Wifi

The main goal of this competition is to design a Battlebot that is capable of disrupting the functionality of the other Battlebots with our fighting tool while maintaining our own functionality.

# Solution

For the project, we plan to build a battlebot with a custom electronic speed controller (ESC) that can independently control three brushless motors: two for the drive system, and one for the fighting tool. This ESC will be controlled by an STM32 microcontroller, to which we will add a Bluetooth module to connect to it and specify how much power we want to send to each motor. To communicate with our robot, we will use a laptop that can connect to Bluetooth.

# Solution Components

## Vehicle Controller

The main subsystem of the robot will be a combined vehicle control board and ESC. This subsystem will contain an STM32 Microcontroller that will serve as the brain for the whole robot. With this MCU, we’ll be able to flash our whole software package that will be able to control the speed and direction of the robot, the robot’s weapon, and the Bluetooth communication.

## Power Module

This subsystem includes the battery, the voltage regulators/converters needed to power the electronics, and the necessary battery monitoring circuitry. Specifically, for the battery, we will use a 14.8V 4S2P LiPo pack to power all the components. There will also be a voltage short detection circuit for the battery that will shut down the robot in case of a short to ensure safe practices. This subsystem also contains a 5V linear regulator and 3.3V linear regulator to power the low voltage electronics.

## Drivetrain/Powertrain

This subsystem includes the motors and H-bridges needed to control both the wheels and weapon of the robot. The H-bridges will be made with regular N-MOSs that will be controlled by a PWM signal sent from the STM32 MCU. This H-bridge setup will be able to control the voltage and polarity sent to the motors, which will be able to control the speed of the wheels or weapon. This subsystem will also include the mechanical wheels of the robot and actual hardware of the weapon, which will be a spinning object. Since all the wheels and the weapon have the same mechanical motion, they can all use the same hardware and software electronically, with minor adjustments in motor selection and the actual mechanical hardware/peripheral.

## Bluetooth Module

One big requirement for this project is the ability for the robot to be controlled wirelessly via laptop. The STM32 MCU has bluetooth capabilities, and with additional peripheral hardware, the robot will be able to communicate over bluetooth with a laptop. The goal for the laptop is to be able to control the speed, direction, and weapon of the robot wirelessly and also have a display for live telemetry.

## Mechanical Design

The last part of our project would be the mechanical design of the robot chassis and weapon. For the chassis and weapon material, we decided to go with PLA+ as it offers a blend of being strong and robust but not being too brittle. The drive system will be a 2-wheeled tank style drive with one motor controlling each side of the robot. For the weapon, we are looking to utilize a fully 3D-printed drum that will have a 100% infill to maximize the rotational inertia which can lead to bigger impacts.

## Criterion for Success

We would consider our project a success if we are able to communicate with the robot from our computer as in sending throttle and steering commands to the robot, if those commands are then processed on the robots microprocessors and the motors are sent the according power needed to move and behave in the way that we want during a match.

## Alternatives

The most commonly used electronics in current antweight battlebots consist mostly of RC drone parts. We plan to create a very similar ESC to those on the market but it will have an integrated Bluetooth wireless capability as well as telemetry monitoring. We also want to focus on minimizing packaging size to lower weight and increase flexibility as much as possible.

Project Videos