Project

# Title Team Members TA Documents Sponsor
67 Toothbrush Alarm
Carl Xu
Eric Lin
Laurenz Nava
Zicheng Ma design_document2.pdf
final_paper1.pdf
photo1.png
photo2.png
photo3.png
photo4.png
presentation1.pdf
proposal2.pdf
video1.mp4
video
# Toothbrush Alarm

Team Members:
- Eric Lin (yulin4)
- Carl Xu (zx32)
- Laurenz Nava (lfnava2)

# Problem

Waking up early in the morning is a challenge that many people face, and conventional alarms often fail to provide an effective solution. Despite setting multiple alarms, people find themselves consistently oversleeping, waking up significantly later than intended. This issue can lead to a range of negative consequences, including disrupted daily schedules, reduced productivity, and increased stress. Traditional alarms tend to lack the ability to ensure that a person not only wakes up but also gets out of bed and starts their day. This is particularly problematic for those with a heavy sleeping pattern or a habit of snoozing alarms.

# Solution

To address this issue, our idea is to create a Toothbrush Alarm. The concept involves an alarm that persists until you get up and spend, for example, 3 minutes brushing your teeth. Once the toothbrushing routine is complete, the alarm automatically stops. This not only ensures a timely wake-up but also promotes a refreshed start to the day after engaging in the morning teeth-cleaning ritual.

# Solution Components

## Subsystem 1 – Toothbrush Dock

The dock will sense the proximity of the toothbrush, and how long the user’s been brushing their teeth. Once the user picks the toothbrush up and puts it down after more than 3 minutes, it will tell the alarm to turn off.

The dock will contain our PCB board to control the whole system.
Multiple pressure sensors are contained in a shape that perfectly matches the bottom of the toothbrush to detect if the toothbrush is docked.

The sensors will be at the bottom and side to ensure the object docked is the toothbrush, and the user is not fooling the dock with another object.

DF9-16 pressure sensor: https://a.co/d/5HXVw5w



## Subsystem 2 – Miniature Accelerometer

To ensure the user brushes their teeth after picking up the toothbrush, the accelerometer will be used to detect whether the user is making appropriate teeth brushing movements. While it is possible to simply wave the toothbrush without actually brushing your teeth, the main purpose of the device is to wake up the user, and sufficient physical movement will help, regardless of if it is used to brush teeth or not.

The accelerometer will determine the force applied on the brush and how often it switches directions, so it can tell when the user is brushing their teeth

ADXL326BCPZ-RL7: https://www.digikey.com/en/products/detail/analog-devices-inc/ADXL326BCPZ-RL7/2043340


## Subsystem 3 - Alarm

The alarm is connected to the toothbrush dock, and it will stop ringing once the user picks up the toothbrush. However, if the user does not put it back into the dock after 5 minutes, it will restart the ring.

The alarm will be a speaker integrated into the dock, or can be wired into the user’s room to more effectively wake them up.

COM-11089 ROHS speaker: https://www.sparkfun.com/products/11089


## Subsystem 4 – Body Motion Sensor

A possible addition to the project for added complexity. It would detect the appearance of a new individual in the bathroom to further ensure the system works intended.

The motion sensor will be installed around the dock, facing the user to detect if they have entered the bathroom and continued present in the bathroom, ensuring they are not fooling the system.

HC-SR312 AM312 pir motion detector senses passive body infrared to make sure the moving object is a human.

HC-SR312 AM312 pir motion detector: https://a.co/d/3Jodam9


# Criterion For Success

1. Alarm will turn off after the user brushed their teeth for 3 minutes.

2. Toothbrush can detect if it is inside a human’s mouth.

3. Dock can detect if the toothbrush is present in the dock.

4. Dock can track how long the toothbrush is not present.

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!