Project

# Title Team Members TA Documents Sponsor
58 Automotive Window Icing Preventer for Cars
Jiwon Bae
Joon Song
Taseen Karim
Vishal Dayalan design_document2.pdf
final_paper1.pdf
photo1.HEIC
photo2.HEIC
presentation1.pdf
proposal2.pdf
video1.mp4
Team Members:
- Jiwon Bae (jiwonb2)
- JoonHyuk Song (js30)
- Taseen Karim (tkarim3)

# Problem

In colder climates, vehicle owners often face the challenge of ice formation on their vehicles. This ice accumulation can affect visibility, vehicle functionality, and overall safety. Removing ice manually can be time-consuming, labor-intensive, and sometimes ineffective, especially in severe weather conditions.
The motivation for the automotive icing preventer is to enhance safety, convenience, and efficiency for vehicle owners in cold climates. By preventing ice formation on vehicles, this solution aims to eliminate the need for manual de-icing, saving vehicle owners considerable time and effort, especially during early morning starts. Also, it ensures clear visibility and unobstructed vehicle operation, crucial for safe driving in winter conditions. Moreover, frequent scraping and chemical de-icers can damage a vehicle's exterior. A more gentle de-icing method can help preserve the vehicle's integrity.

# Solution

Our solution is to design an automotive heating system attached to the inside of the vehicle onto the windshield. The device will contain heating coils within a carefully selected burn-resistant material, heating the windshield from the inside to ultimately reduce the icing. The heating pad would utilize a temperature sensor and thermostat-like closed-loop feedback system controlled over a microcontroller, as well as an LED display which would give feedback to the users. Our device will also contain a small battery-powered unit that will deliver power to the sensors and activate/deactivate power to the coils based off of the sensor feedback.

# Solution Components

## Microcontroller
The microcontroller will be the control unit for the entire system. It would be connected to the temperature sensor, power supply, and the feedback to the users. We decided to use an Arduino microcontroller where we could easily monitor the exact temperature outside and specifically control the temperature of the heating pad. The control unit carefully detects the temperature of the windshield regularly and turns on the heating pad when the temperature of the outside of the windshield is well below freezing degrees. The windshield of a car typically endures a temperature of up to 100 degrees of directly applied heat before potentially cracking. Thus, for the heating pad, we are aiming for a temperature of 32-40 degrees(F) for the windshield, which is well over freezing degrees and would use less power as well. Consistently checking the temperature of the windshield and the heating pad, once the windshield reaches the capacity we determined (40 degrees), the heating pad will turn off.
The control unit also is responsible for outputting feedback to the users on the LED display. It would contain the indication of whether the heating pad is on or off. The LED would light green if the heating pad is on and would turn off when the heating pad is off.

## Power Unit
The power supply unit will utilize a variable voltage regulator to adjust power from 30W to 200W to the heating coils, with a fixed voltage of 3.3V to sensors and microcontroller. We will need long-lasting and rechargeable batteries (LiPo batteries are most ideal), along with a battery holder.

## Sensor Unit
The sensor unit will utilize some sort of temperature sensing technology (thermocouple, RTD, thermistors, this is TBD) and be integrated into a closed-loop feedback system that is linked to the power unit. Direct power to the heating coils will be fully determined by the sensor unit. If the sensor unit detects temperatures below freezing, it will queue the power unit to deliver power directly to the coils. If the sensor unit detects temperatures above freezing, the heating coils will stop receiving power. The sensor unit will be receiving low fixed voltage at all times.



# Criterion For Success

For the automotive icing preventer project, success can be defined by meeting the following specific and measurable goals:

Surface Temperature Regulation: The system maintains the vehicle's surface temperature consistently above 0°C (32°F), regardless of external weather conditions. This is verified by sensor data indicating that the surface temperature never falls below the freezing point during operation.

Power Regulation: The coils will only receive power when temperatures fall below freezing point. When temperatures are ideal, the coils will remain off and a constant voltage will be relayed to the microcontroller and sensor units to continue monitoring temperature fluctuations.

Feedback: We will incorporate some form of display to show whether or not the coils are receiving power as well as battery percentage. We will also have a variable voltage regulator display showing the amount of supplied voltage.

Master Bus Processor

Clay Kaiser, Philip Macias, Richard Mannion

Master Bus Processor

Featured Project

General Description

We will design a Master Bus Processor (MBP) for music production in home studios. The MBP will use a hybrid analog/digital approach to provide both the desirable non-linearities of analog processing and the flexibility of digital control. Our design will be less costly than other audio bus processors so that it is more accessible to our target market of home studio owners. The MBP will be unique in its low cost as well as in its incorporation of a digital hardware control system. This allows for more flexibility and more intuitive controls when compared to other products on the market.

Design Proposal

Our design would contain a core functionality with scalability in added functionality. It would be designed to fit in a 2U rack mount enclosure with distinct boards for digital and analog circuits to allow for easier unit testings and account for digital/analog interference.

The audio processing signal chain would be composed of analog processing 'blocks’--like steps in the signal chain.

The basic analog blocks we would integrate are:

Compressor/limiter modes

EQ with shelf/bell modes

Saturation with symmetrical/asymmetrical modes

Each block’s multiple modes would be controlled by a digital circuit to allow for intuitive mode selection.

The digital circuit will be responsible for:

Mode selection

Analog block sequence

DSP feedback and monitoring of each analog block (REACH GOAL)

The digital circuit will entail a series of buttons to allow the user to easily select which analog block to control and another button to allow the user to scroll between different modes and presets. Another button will allow the user to control sequence of the analog blocks. An LCD display will be used to give the user feedback of the current state of the system when scrolling and selecting particular modes.

Reach Goals

added DSP functionality such as monitoring of the analog functions

Replace Arduino boards for DSP with custom digital control boards using ATmega328 microcontrollers (same as arduino board)

Rack mounted enclosure/marketable design

System Verification

We will qualify the success of the project by how closely its processing performance matches the design intent. Since audio 'quality’ can be highly subjective, we will rely on objective metrics such as Gain Reduction (GR [dB]), Total Harmonic Distortion (THD [%]), and Noise [V] to qualify the analog processing blocks. The digital controls will be qualified by their ability to actuate the correct analog blocks consistently without causing disruptions to the signal chain or interference. Additionally, the hardware user interface will be qualified by ease of use and intuitiveness.

Project Videos