Project

# Title Team Members TA Documents Sponsor
27 Oxygen Delivery Robot
Honorable Mention
Aidan Dunican
Nazar Kalyniouk
Rutvik Sayankar
Selva Subramaniam design_document3.pdf
final_paper1.pdf
photo1.png
photo2.png
presentation1.pptx
proposal2.pdf
# Oxygen Delivery Robot

Team Members:
- Rutvik Sayankar (rutviks2)
- Aidan Dunican (dunican2)
- Nazar Kalyniouk (nazark2)

# Problem

Children's interstitial and diffuse lung disease (ChILD) is a collection of diseases or disorders. These diseases cause a thickening of the interstitium (the tissue that extends throughout the lungs) due to scarring, inflammation, or fluid buildup. This eventually affects a patient’s ability to breathe and distribute enough oxygen to the blood.

Numerous children experience the impact of this situation, requiring supplemental oxygen for their daily activities. It hampers the mobility and freedom of young infants, diminishing their growth and confidence. Moreover, parents face an increased burden, not only caring for their child but also having to be directly involved in managing the oxygen tank as their child moves around.


# Solution

Given the absence of relevant solutions in the current market, our project aims to ease the challenges faced by parents and provide the freedom for young children to explore their surroundings. As a proof of concept for an affordable solution, we propose a three-wheeled omnidirectional mobile robot capable of supporting filled oxygen tanks in the size range of M-2 to M-9, weighing 1 - 6kg (2.2 - 13.2 lbs) respectively (when full). Due to time constraints in the class and the objective to demonstrate the feasibility of a low-cost device, we plan to construct a robot at a ~50% scale of the proposed solution. Consequently, our robot will handle simulated weights/tanks with weights ranging from 0.5 - 3 kg (1.1 - 6.6 lbs).

The robot will have a three-wheeled omni-wheel drive train, incorporating two localization subsystems to ensure redundancy and enhance child safety. The first subsystem focuses on the drivetrain and chassis of the robot, while the second subsystem utilizes ultra-wideband (UWB) transceivers for triangulating the child's location relative to the robot in indoor environments. As for the final subsystem, we intend to use a camera connected to a Raspberry Pi and leverage OpenCV to improve directional accuracy in tracking the child.

As part of the design, we intend to create a PCB in the form of a Raspberry Pi hat, facilitating convenient access to information generated by our computer vision system. The PCB will incorporate essential components for motor control, with an STM microcontroller serving as the project's central processing unit. This microcontroller will manage the drivetrain, analyze UWB localization data, and execute corresponding actions based on the information obtained.

# Solution Components

## Subsystem 1: Drivetrain and Chassis

This subsystem encompasses the drive train for the 3 omni-wheel robot, featuring the use of 3 H-Bridges (L298N - each IC has two H-bridges therefore we plan to incorporate all the hardware such that we may switch to a 4 omni-wheel based drive train if need be) and 3 AndyMark 245 RPM 12V Gearmotors equipped with 2 Channel Encoders. The microcontroller will control the H-bridges. The 3 omni-wheel drive system facilitates zero-degree turning, simplifying the robot's design and reducing costs by minimizing the number of wheels. An omni-wheel is characterized by outer rollers that spin freely about axes in the plane of the wheel, enabling sideways sliding while the wheel propels forward or backward without slip. Alongside the drivetrain, the chassis will incorporate 3 HC-SR04 Ultrasonic sensors (or three bumper-style limit switches - like a Roomba), providing a redundant system to detect potential obstacles in the robot's path.

## Subsystem 2: UWB Localization
This subsystem suggests implementing a module based on the DW1000 Ultra-Wideband (UWB) transceiver IC, similar to the technology found in Apple AirTags. We opt for UWB over Bluetooth due to its significantly superior accuracy, attributed to UWB's precise distance-based approach using time-of-flight (ToF) rather than meer signal strength as in Bluetooth.

This project will require three transceiver ICs, with two acting as "anchors" fixed on the robot. The distance to the third transceiver (referred to as the "tag") will always be calculated relative to the anchors. With the transceivers we are currently considering, at full transmit power, they have to be at least 18" apart to report the range. At minimum power, they work when they are at least 10 inches. For the "tag," we plan to create a compact PCB containing the transceiver, a small coin battery, and other essential components to ensure proper transceiver operation. This device can be attached to a child's shirt using Velcro.

## Subsystem 3: Computer Vision
This subsystem involves using the OpenCV library on a Raspberry Pi equipped with a camera. By employing pre-trained models, we aim to enhance the reliability and directional accuracy of tracking a young child. The plan is to perform all camera-related processing on the Raspberry Pi and subsequently translate the information into a directional command for the robot if necessary. Given that most common STM chips feature I2C buses, we plan to communicate between the Raspberry Pi and our microcontroller through this bus.

## Division of Work:
Given that we already have a 3 omni wheel robot, it is a little bit smaller than our 50% scale but it allows us to immediately begin work on UWB localization and computer vision until a new iteration can be made. Simultaneously, we'll reconfigure the drive train to ensure compatibility with the additional systems we plan to implement, and the ability to move the desired weight. To streamline the process, we'll allocate specific tasks to individual group members – one focusing on UWB, another on Computer Vision, and the third on the drivetrain. This division of work will allow parallel progress on the different aspects of the project.

# Criterion For Success

Omni-wheel drivetrain that can drive in a specified direction.
Close-range object detection system working (can detect objects inside the path of travel).
UWB Localization down to an accuracy of < 1m.

## Current considerations

We are currently in discussion with Greg at the machine shop about switching to a four-wheeled omni-wheel drivetrain due to the increased weight capacity and integrity of the chassis. To address the safety concerns of this particular project, we are planning to implement the following safety measures:
- Limit robot max speed to <5 MPH
- Using Empty Tanks/ simulated weights. At NO point ever will we be working with compressed oxygen. Our goal is just to prove that we can build a robot that can follow a small human.
- We are planning to work extensively to design the base of the robot to be bottom-heavy & wide to prevent the tipping hazard.

Electronic Replacement for COVID-19 Building Monitors @ UIUC

Patrick McBrayer, Zewen Rao, Yijie Zhang

Featured Project

Team Members: Patrick McBrayer, Yijie Zhang, Zewen Rao

Problem Statement:

Students who volunteer to monitor buildings at UIUC are at increased risk of contracting COVID-19 itself, and passing it on to others before they are aware of the infection. Due to this, I propose a project that would create a technological solution to this issue using physical 2-factor authentication through the “airlock” style doorways we have at ECEB and across campus.

Solution Overview:

As we do not have access to the backend of the Safer Illinois application, or the ability to use campus buildings as a workspace for our project, we will be designing a proof of concept 2FA system for UIUC building access. Our solution would be composed of two main subsystems, one that allows initial entry into the “airlock” portion of the building using a scannable QR code, and the other that detects the number of people that entered the space, to determine whether or not the user will be granted access to the interior of the building.

Solution Components:

Subsystem #1: Initial Detection of Building Access

- QR/barcode scanner capable of reading the code presented by the user, that tells the system whether that person has been granted or denied building access. (An example of this type of sensor: (https://www.amazon.com/Barcode-Reading-Scanner-Electronic-Connector/dp/B082B8SVB2/ref=sr_1_11?dchild=1&keywords=gm65+scanner&qid=1595651995&sr=8-11)

- QR code generator using C++/Python to support the QR code scanner.

- Microcontroller to receive the information from the QR code reader and decode the information, then decide whether to unlock the door, or keep it shut. (The microcontroller would also need an internal timer, as we plan on encoding a lifespan into the QR code, therefore making them unusable after 4 days).

- LED Light to indicate to the user whether or not access was granted.

- Electronic locking mechanism to open both sets of doors.

Subsystem #2: Airlock Authentication of a Single User

- 2 aligned sensors ( one tx and other is rx) on the bottom of the door that counts the number of people crossing a certain line. (possibly considering two sets of these, so the person could not jump over, or move under the sensors. Most likely having the second set around the middle of the door frame.

- Microcontroller to decode the information provided by the door sensors, and then determine the number of people who have entered the space. Based on this information we can either grant or deny access to the interior building.

- LED Light to indicate to the user if they have been granted access.

- Possibly a speaker at this stage as well, to tell the user the reason they have not been granted access, and letting them know the

incident has been reported if they attempted to let someone into the building.

Criterion of Success:

- Our system generates valid QR codes that can be read by our scanner, and the data encoded such as lifespan of the code and building access is transmitted to the microcontroller.

- Our 2FA detection of multiple entries into the space works across a wide range of users. This includes users bound to wheelchairs, and a wide range of heights and body sizes.