Project

# Title Team Members TA Documents Sponsor
6 Bruxism Treatment
Edric Lin
Justin Song
Mingjia Huo design_document1.pdf
final_paper1.pdf
presentation1.pdf
proposal1.pdf
# Problem
Sleep bruxism, more commonly known as tooth grinding, is a condition where one grinds or clenches their teeth unconsciously while sleeping. Depending on the particular study, anywhere from 10-30% of the population can be affected by this condition. Should bruxism be severe and frequent enough, it can lead to jaw disorder(s), headaches, damaged teeth, and other problems. There is not one singular cause for bruxism and as such, current solutions act more as a temporary measure to minimize damage rather than address the issue itself. For example, common dental solutions include using a mouth guard and, in some cases, undergoing dental correction. Similar to treatments, medication serves mostly as a reactionary measure where they attempt to address issues and complications that arise from bruxism.

# Solution Overview
The goal of this project is to develop a two part system: detection and prevention. The main objective is to take on a more active role of addressing the condition rather than addressing consequences of the condition. The detection part will consist of a variety of sensors and the prevention part will have user feedback and data processing/storage.

# Solution Components
## Detection System
### EMG Circuit
We plan to use an EMG (electromyography) circuit to detect muscle contraction of the jaw. The data coming out of said circuit would be processed through an ADC and then be saved into a micro-controller in order to be viewed later.

### Micro-controller
A mapping will need to be created in order to translate the data into a readable format and useful data for later viewing. Most likely, we will create a feature that will transmit this data to a PC.


## Prevention System
Should teeth clenching be detected, an alarm system and a muscle stimulator will be activated. The muscle stimluator aims to relax the muscles around the jaw.

## Power Subsystem
The entire system will be powered through an outlet in the wall given the fact that the system should optimally be on through an entire night and ideally for multiple nights in a row.


# Criterion for Success
Demonstration can include a participant grinding their teeth, getting feedback from the prevention portion of the system, and then viewing the data after. Criterion for success would simply be the aforementioned steps working as intended.

Oxygen Delivery Robot

Aidan Dunican, Nazar Kalyniouk, Rutvik Sayankar

Oxygen Delivery Robot

Featured Project

# Oxygen Delivery Robot

Team Members:

- Rutvik Sayankar (rutviks2)

- Aidan Dunican (dunican2)

- Nazar Kalyniouk (nazark2)

# Problem

Children's interstitial and diffuse lung disease (ChILD) is a collection of diseases or disorders. These diseases cause a thickening of the interstitium (the tissue that extends throughout the lungs) due to scarring, inflammation, or fluid buildup. This eventually affects a patient’s ability to breathe and distribute enough oxygen to the blood.

Numerous children experience the impact of this situation, requiring supplemental oxygen for their daily activities. It hampers the mobility and freedom of young infants, diminishing their growth and confidence. Moreover, parents face an increased burden, not only caring for their child but also having to be directly involved in managing the oxygen tank as their child moves around.

# Solution

Given the absence of relevant solutions in the current market, our project aims to ease the challenges faced by parents and provide the freedom for young children to explore their surroundings. As a proof of concept for an affordable solution, we propose a three-wheeled omnidirectional mobile robot capable of supporting filled oxygen tanks in the size range of M-2 to M-9, weighing 1 - 6kg (2.2 - 13.2 lbs) respectively (when full). Due to time constraints in the class and the objective to demonstrate the feasibility of a low-cost device, we plan to construct a robot at a ~50% scale of the proposed solution. Consequently, our robot will handle simulated weights/tanks with weights ranging from 0.5 - 3 kg (1.1 - 6.6 lbs).

The robot will have a three-wheeled omni-wheel drive train, incorporating two localization subsystems to ensure redundancy and enhance child safety. The first subsystem focuses on the drivetrain and chassis of the robot, while the second subsystem utilizes ultra-wideband (UWB) transceivers for triangulating the child's location relative to the robot in indoor environments. As for the final subsystem, we intend to use a camera connected to a Raspberry Pi and leverage OpenCV to improve directional accuracy in tracking the child.

As part of the design, we intend to create a PCB in the form of a Raspberry Pi hat, facilitating convenient access to information generated by our computer vision system. The PCB will incorporate essential components for motor control, with an STM microcontroller serving as the project's central processing unit. This microcontroller will manage the drivetrain, analyze UWB localization data, and execute corresponding actions based on the information obtained.

# Solution Components

## Subsystem 1: Drivetrain and Chassis

This subsystem encompasses the drive train for the 3 omni-wheel robot, featuring the use of 3 H-Bridges (L298N - each IC has two H-bridges therefore we plan to incorporate all the hardware such that we may switch to a 4 omni-wheel based drive train if need be) and 3 AndyMark 245 RPM 12V Gearmotors equipped with 2 Channel Encoders. The microcontroller will control the H-bridges. The 3 omni-wheel drive system facilitates zero-degree turning, simplifying the robot's design and reducing costs by minimizing the number of wheels. An omni-wheel is characterized by outer rollers that spin freely about axes in the plane of the wheel, enabling sideways sliding while the wheel propels forward or backward without slip. Alongside the drivetrain, the chassis will incorporate 3 HC-SR04 Ultrasonic sensors (or three bumper-style limit switches - like a Roomba), providing a redundant system to detect potential obstacles in the robot's path.

## Subsystem 2: UWB Localization

This subsystem suggests implementing a module based on the DW1000 Ultra-Wideband (UWB) transceiver IC, similar to the technology found in Apple AirTags. We opt for UWB over Bluetooth due to its significantly superior accuracy, attributed to UWB's precise distance-based approach using time-of-flight (ToF) rather than meer signal strength as in Bluetooth.

This project will require three transceiver ICs, with two acting as "anchors" fixed on the robot. The distance to the third transceiver (referred to as the "tag") will always be calculated relative to the anchors. With the transceivers we are currently considering, at full transmit power, they have to be at least 18" apart to report the range. At minimum power, they work when they are at least 10 inches. For the "tag," we plan to create a compact PCB containing the transceiver, a small coin battery, and other essential components to ensure proper transceiver operation. This device can be attached to a child's shirt using Velcro.

## Subsystem 3: Computer Vision

This subsystem involves using the OpenCV library on a Raspberry Pi equipped with a camera. By employing pre-trained models, we aim to enhance the reliability and directional accuracy of tracking a young child. The plan is to perform all camera-related processing on the Raspberry Pi and subsequently translate the information into a directional command for the robot if necessary. Given that most common STM chips feature I2C buses, we plan to communicate between the Raspberry Pi and our microcontroller through this bus.

## Division of Work:

Given that we already have a 3 omni wheel robot, it is a little bit smaller than our 50% scale but it allows us to immediately begin work on UWB localization and computer vision until a new iteration can be made. Simultaneously, we'll reconfigure the drive train to ensure compatibility with the additional systems we plan to implement, and the ability to move the desired weight. To streamline the process, we'll allocate specific tasks to individual group members – one focusing on UWB, another on Computer Vision, and the third on the drivetrain. This division of work will allow parallel progress on the different aspects of the project.

# Criterion For Success

Omni-wheel drivetrain that can drive in a specified direction.

Close-range object detection system working (can detect objects inside the path of travel).

UWB Localization down to an accuracy of < 1m.

## Current considerations

We are currently in discussion with Greg at the machine shop about switching to a four-wheeled omni-wheel drivetrain due to the increased weight capacity and integrity of the chassis. To address the safety concerns of this particular project, we are planning to implement the following safety measures:

- Limit robot max speed to <5 MPH

- Using Empty Tanks/ simulated weights. At NO point ever will we be working with compressed oxygen. Our goal is just to prove that we can build a robot that can follow a small human.

- We are planning to work extensively to design the base of the robot to be bottom-heavy & wide to prevent the tipping hazard.