

Smart Bruxism Treatment Device

ECE 445 Presentation

Team 6
Edric Lin, Justin Song

December 6, 2022

Outline

Introduction

Subsystems

Challenges

Successes

Failures

Future Work

Conclusion

Introduction

Introduction

Bruxism

- Commonly known as "tooth grinding"
- Affects up to 20% of adults and children [1]
- Causes other problems (chipped teeth, headaches, & more) [1]

Mechanisms of bruxism [2]

Bruxism Example Video [3]

Introduction

Proposed Solution

- Many current treatments aim to treat symptoms, not the causes
- Electric stimulation of the muscle
- Smart device that handles detection, data collection, and treatment administration

Original Block Diagram

Original Block Diagram

Final Block Diagram

Final Block Diagram

Power Subsystem

Focused Block Diagram

Power Subsystem

Power Subsystem

Detection Subsystem

EMG

Overview

- Electromyography
- Detects electrical activity within muscles

[9] EMG electrodes example

[8] EMG signal example

Focused Block Diagram

Targeted muscle and electrode placement [4]

Audio Detector

Focused Block Diagram

Audio Detector

Audio Detector

Microphone

Control Subsystem

Control Subsystem

Focused Block Diagram

Control Flow

Control Flow

Control Subsystem

Prevention Subsystem

TENS Unit

TENS Unit

TENS Unit [6], [7]

- Transcutaneous Electrical Nerve Stimulation
- Designed for pain relief and muscle stimulation/relaxation using electrical impulses
- Deployed through electrodes
- Widely regarded to be safe
 - Several devices on the market have FDA approval

Focused Block Diagram

Safety and Ethical Considerations

Risk Mitigations

- All human testing with the TENS would have been conducted on ourselves
- Any data collected would not be shared without consent
 - No WiFi Design

Buzzer

Implementation

Challenges

Audio Detector

Audio Detector

Development Issues

- Initial design failed
- Second design was space costly
 - Physical dimensions of container already determined
- Third design mostly worked as intended

Passive Bandpass filter

- Spectrum analyzer had pass range 1 kHz 2 kHz
 - Frequency range of crunchy sounds (according to research)
- Empirical testing had pass range 1 kHz 3.5 kHz
 - Settled for this range in the end

Obsolete Audio Detector PCBs

- Peak voltage from jaw muscles unknown
 - Research said that EMG signals are within 5-15 mV range
- Shape of voltage signal from jaw muscles unknown
 - Research said that it would be very noisy

- Empirical testing suggested very different
 EMG signal characteristics
 - Magnitude of signal: 0.1 10 μV
 - Looked closer to a step function

Raw EMG signal amplified by 1,000,000

- Empirical testing suggested very different
 EMG signal characteristics
 - Magnitude of signal: 0.1 10 μV
 - Looked closer to a step function

Raw EMG signal amplified by 1,000,000

- Initial design failed
 - Not enough gain (~495)
- Second design failed
 - Needed capacitors to block DC outputs of Op Amps
- Third design failed
 - Non-inverting amplifiers vs. Inverting amplifiers
- Fourth design worked
 - Improvised PCB/Breadboard hybrid

Obsolete EMG PCBs

Successes

Alarm/Buzzer

- Alarm system was vastly simplified
 - Learned how buzzers worked

Successes

Others

- Power PCB functioned as expected
 - Simplified as well
- Microcontroller functioned as needed
- Audio Detection circuit eventually worked
- EMG eventually worked

TENS Unit

Initial LTSpice simulations seemed promising

TENS Unit

Initial LTSpice simulations seemed promising

TENS Unit

Initial LTSpice simulations seemed promising

Physical TENS Unit Output (Pre-Transformer)

Physical TENS Unit Output (Pre-Transformer)

TENS Unit

- Problem: Transformer not to needed specifications
 - Cannot operate below 10 kHz frequencies
- Solution: Line frequency transformer

TENS Unit

- Problem: TENS unit's electrodes overlaps EMG's electrodes
- Solution:
 - Explore non-skin contact alternatives to EMG for detection
 - Explore non-skin contact alternatives to the TENS unit
 - Therapeutic Ultrasound?

Future Work

Future Work

Potential Improvements

- Optional Ethernet or WiFi capabilities
- User adjustments via mechanical knobs
- Alternative to TENS device
- Integration with smartphone application
- More detailed statistics
- Wall powered
- Further downsizing

Conclusion

Conclusion

Summary

- Device detects movement of jaw muscles
- Device detects sounds within "crunch" frequency range
- Device is battery powered by four 3.7V 2500 mAh batteries
 - 4V in reality
- Device stores EMG and audio signals' magnitude
- Device gives warning buzz when Bruxism is detected
- Device does not give electric pulses to counter muscle movement

Conclusion

What we've learned

- Have contingency plans
 - Ordering delays of PCBs and parts
 - Breadboard circuit working, but PCB circuit failing
- Improvising PCBs when needed
 - Soldering jumper wires
- Specific analog circuit oddities

We would like to thank:

- Mingjia Huo (our TA) for her support and attentiveness to our project
- Professor Joseph Irudayaraj (Professor in BIOE) for early advice
- Alexander Bom (BIOE student & our friend) for electrode guidance
- Professor Andrew Stillwell (Professor in ECE) for transformer advice
- Greggory Bennet & Skee Aldrich (Machine Shop) for building our container
- The rest of the ECE 445 Staff for running the course

Citations

- [1] S. Shetty, V. Pitti, C. L. Satish Babu, G. P. Surendra Kumar, and B. C. Deepthi, "Bruxism: A literature review," *Journal of Indian Prosthodontic Society*, 22-Jan-2011. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3081266/. [Accessed: 29-Nov-2022].
- [2] "Bruxism treatment Orlando FL: Bruxism: TMJ disorders Winter Garden, Ocoee FL," *Bruxism Treatment Orlando FL* | *Bruxism* | *TMJ Disorders Winter Garden, Ocoee FL*. [Online]. Available: https://www.smilesoforlando.com/services/restorative-dentistry/bruxism-treatment/. [Accessed: 29-Nov-2022].
- [3] J. Cline, "Teeth Grinding," *YouTube*, Feb. 26, 2014. Accessed: Nov. 30, 2022. [Website Video]. Available: https://www.youtube.com/watch?v=2_-cyuTjjUo&ab_channel=JocelynCline
- [4] N. PT, "Muscle Monday: Masseter (TMJ)," Nashville Physical Therapy & Performance, Jul. 26, 2021. https://www.nashvillephysicaltherapy.com/post/muscle-monday-masseter-tmj (accessed Nov. 30, 2022).
- [5] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, "Techniques of EMG signal analysis: detection, processing, classification and applications," *Biological Procedures Online*, vol. 8, no. 1, pp. 11–35, Dec. 2006, doi: 10.1251/bpo115.
- [6] "TENS (transcutaneous electrical nerve stimulation)," NHS choices, Apr-2022. [Online]. Available: https://www.nhs.uk/conditions/transcutaneous-electrical-nerve-stimulation-tens/. [Accessed: 29-Nov-2022].
- [7] Center for Devices and Radiological Health, "Electronic muscle stimulators," *U.S. Food and Drug Administration*. [Online]. Available: https://www.fda.gov/medical-devices/consumer-products/electronic-
- muscle-stimulators. [Accessed: 29-Sep-2022]
- [8] D. Khatri, "Electromyography (EMG) walkthrough," Crowd Supply. 30-Aug-2021. [Online]. Available:
- https://www.crowdsupply.com/upside-down-labs/bioamp-exg-pill/updates/electromyography-emg-walkthrough. [Accessed: 03-Dec-2022].
- [9] "Inner forearm / flexor of wrist and fingers electrode placement," *DJO Store*. [Online]. Available: https://www.compex.com/electrode-placements/flexor-wrist-fingers. [Accessed: 03-Dec-2022].

References

"Wiki," *Activity: Precision Rectifiers, Absolute value circuits, For ADALM1000 [Analog Devices Wiki]*, 03-Nov-2021. [Online]. Available: https://wiki.analog.com/university/courses/alm1k/circuits1/alm-cir-precision-rectifier. [Accessed: 29-Nov-2022].

K. Rohwer, "Transcutaneous electrical nerve stimulator (TENS) circuit diagram," *Learning Electronics*. [Online]. Available: https://www.learningelectronics.net/circuits/transcutaneous-electrical-nerve 03.html. [Accessed: 29-Nov-2022]

Megcircuitsprojects, "EMG Sensing Circuit," *Instructables*, 20-May-2019. [Online]. Available: https://www.instructables.com/EMG-Sensing-Circuit/. [Accessed: 29-Sep-2022].

- S. Neat Projects, "Arduino: How to Use a Piezo Buzzer," *YouTube.* Jun. 13, 2016. Accessed: Nov. 30, 2022. [Online Video]. Available: https://www.youtube.com/watch?v=K8AnIUT0ng0&t=75s&ab_channel=Sam%27sNeatProjects
- C. Spence, "Eating with our ears: assessing the importance of the sounds of consumption on our perception and enjoyment of multisensory flavour experiences," *Flavour*, vol. 4, no. 1, Mar. 2015, doi: 10.1186/2044-7248-4-3.
- M. D. Langer and G. K. Lewis, "Sustained acoustic medicine: A novel long duration approach to biomodulation utilizing low intensity therapeutic ultrasound," *SPIE Proceedings*, 2015.

Thank You

Questions?

