Hardware

Hardware Resources

The Srivastava Senior Design Lab has a wide variety of hardware available for use in projects, including microcontrollers, DSP boards, LINX RF transmitters and receivers, GPS units, webcams and more. These things can all be checked out from you TA for use on your project. See below for more details, and check out the links above.

Development Boards

Intel Galileo Development Boards

The lab has 25 Intel Galileo Development Boards available for checkout. The following links are useful resources for working with these boards:

Microcontrollers

PIC Microcontrollers

The lab has a number of PIC16F877A microcontrollers available for use in projects. It is understandable that wiring errors might happen, so each student is allowed to burn out a maximum of two PICs. They are programmed in a simplified C instruction set and are used to simplify design and perform IO with ease. Check the PIC Tutorial for more information.

BASIC Stamp Microcontrollers

The BASIC Stamp is a simple, tiny microcontroller with serial communications abilities, programmed in BASIC. This makes it ideal for simple applications where I/O speed is not critical, and the complexity of the HC12 is not needed.

DSPs

TI TMS320C54x DSPs

We have several C54x DSPs available for checkout (if demand is high, sharing a DSP with another group may be needed). Check out these resources for more information:

TI TMS320C6713 DSP

We have one TMS320C6713 (16 Mb) Floating Point DSP that was graciously donated by TI. The board is in the TA cabinet and is available for checkout.

LINX RF modules

We have a number of LINX transmitters and receivers available in the lab for RF projects, with a choice of the LC Series (315 or 418 MHz) or the HP series (902-928 MHz band).

GPS kits

We have 2-3 Garmin 12 XL GPS receivers. The Garmin units are equipped with a serial communication port and can be interfaced with microcontrollers or computers to provide information on position (lat, long, altitude, time) and velocity (differentiation of position). We also have one equivalent Motorola kit, and another kit by Ashtech (Eval and development kit, 990285). There are antennas on the roof of EL with wires into the lab so that data can be acquired while in the building (for testing purposes). The antennas can be accessed through connectors in the back left corner of the lab, by the far computer.

Economic Overnight Outlet

Chester Hall, Sabrina Moheydeen, Jarad Prill

Featured Project

**Team**

- Chester Hall (chall28), Sabrina Moheydeen (sabrina7), Jarad Prill (jaradjp2)

**Title**

- Economic Overnight Outlet

**Problem**

- Real-time pricing in ISOs, such as the Midwest, California, New England, and New York, provides differentials in electricity prices throughout the day that can be taken advantage of. The peak price of electricity compared to the minimum prices can feature variations of up to 70%. With price agnostic charging, this results in unnecessary costs for those who charge devices (see attached spreadsheet). This same principle can thus be scaled for large commercialized applications requiring high-capacity batteries, resulting in a higher savings potential to be taken advantage of.

- Calcs: https://docs.google.com/spreadsheets/d/1JBzt2xm0Ue4a_teosdak623h0zSP5nHRKi7Wi8rMcPo/edit?usp=sharing

**Solution Overview**

- We will create a device that can fetch real-time prices from regional ISOs and enable charging when prices are lowest. Our primary application will be centered towards warehouse electric vehicles using high-capacity, fast-charging lithium ion batteries. Such vehicles include forklifts, cleaning machines, and golf carts.

**Solution Components**

- [ISO LMP API] - Through use of a WiFi-enabled microcontroller we can fetch real-time prices and build our control system around these values.

- [Passive High Performance Protection] - In order to provide downstream safety to the loads, we will ensure the device features surge protection and is rated for the high current of fast charging. The switching of the connection will be done with a contactor whose coil is energized according to the microcontroller.

- [Device Display] - LCD display to show information about the current energy price and the current day’s savings.

- [Manual User Override] - The device will feature a manual toggle switch to either enable or disable the cost-optimized charging feature allowing users to charge loads at any time, not necessarily the cheapest.

- [User Interface] - Software application to allow for user input regarding the time of day the device must be charged by. The application will also display information about total savings per week, month, or year and savings over the device’s lifetime.

- [Control Power Converter] - In order to run the low voltage control systems from the outlet, either 120VAC or 3-phase 480VAC, we will need to step this down to a low DC voltage of around 3.3VDC.

- [Memory System] - Microcontroller capable of performing control function within user specified parameters.

- [Device Connection] - Connectivity to the battery of the device being charged so that current state of charge (SoC) information can be used. Potential experimental filter algorithms will be used in order to estimate the SoC automatically, without requiring the user to input the specific data of the device being used.

**Criterion for Success**

- Able to charge devices at lowest cost times of the day and display current pricing and savings information. The upfront cost of a large-scale reproducible product must be less than the lifetime savings incurred by purchasing the product. Users without an engineering background can easily analyze their savings to visually recognize the device’s benefit.