Mock Presentation

Description

Similar to the Design Doc Check and the Mock Demo, the Mock Presentation is an informal, mandatory event designed to better prepare you for your Final Presentation. In these sessions, you will present a few of your slides (about 10-15 minutes), and get feedback from the course staff as well as a few invited Department of Communication TAs. You will also be able to see a few of your peers' Mock Presentations, as there are up to 3 teams per time slot.

Requirements and Grading

The Mock Presentation is meant to be an opportunity for you to get feedback on a subset of your final presentation. It is recommended that you choose some aspect of your project, and present the design, results, and conclusions from that aspect. In order to get relevant feedback on your presentation skills, your Mock Presentation should also have an introduction and conclusion. You will receive feedback on your delivery, the format of your slides, and the organization of your presentation. Your slides should generally include:

  1. Title slide: Names, group #, title.
  2. Introduction slide: What is the project?
  3. Objective slide: What problem does this solve?
  4. Design Slides: A few slides on design, requirements and verification (should include block diagram, math, graphs, figures, tables).
  5. Conclusion: Wrap things up, future work.

Mock presentation is graded credit/no credit based on attendance and apparent effort; showing up completely unprepared will earn no credit.

Submission and Deadlines

Sign-up is handled through PACE. Time slots are 1 hour long, and multiple groups will share a time slot. This will give you an opportunity to give and receive feedback from your peers. You will be required to stay until all groups have presented and received feedback.

BarPro Weightlifting Aid Device

Patrick Fejkiel, Grzegorz Gruba, Kevin Mienta

Featured Project

Patrick Fejkiel (pfejki2), Kevin Mienta (kmient2), Grzegorz Gruba (ggruba2)

Title: BarPro

Problem: Many beginner weightlifters struggle with keeping the barbell level during lifts. Even seasoned weightlifters find their barbells swaying to one side sometimes. During heavy lifts, many people also struggle with full movements after a few repetitions.

Solution Overview: BarPro is a device that straps on to a barbell and aids the lifter with keeping the barbell level, maintaining full repetitions and keeping track of reps/sets. It keeps track of the level of the barbell and notifies the lifter with a sound to correct the barbell positioning when not level. The lifter can use the device to calibrate their full movement of the repetition before adding weight so that when heavy weight is applied, the device will use data from the initial repetition to notify the lifter with a sound if they are not lifting or lowering the barbell all the way during their lift. There will be an LCD screen or LEDs showing the lifter the amount of repetitions/sets that they have completed.

Solution Components:

Subsystem #1 - Level Sensor: An accelerometer will be used to measure the level of the barbell. If an unlevel position is measured, a speaker will beep and notify the lifter.

Subsystem #2 - Full Repetition Sensor: An ultrasonic or infrared distance sensor will be used to measure the height of the barbell from the ground/body during repetitions. The sensor will first be calibrated by the lifter during a repetition with no weight, and then that calibration will be used to check if the lifter is having their barbell reach the calibrated maximum and minimum heights.

Subsystem #3 - LED/LCD Rep/Sets Indicator: LEDs or a LCD screen will be used to display the reps/sets from the data measured by the accelerometer.

Criterion for Success: Our device needs to be user friendly and easily attachable to the barbell. It needs to notify the lifter with sounds and LEDs/LCD display when their barbell is not level, when their movements are not fully complete, and the amount of reps/sets they have completed. The device needs to work smoothly, and testing/calibrating will need to be performed to determine the minimum/maximum values for level and movement positioning.