Project
| # | Title | Team Members | TA | Documents | Sponsor |
|---|---|---|---|---|---|
| 58 | Adherescent (Team 2) Auto Time Setting Scent Reminder |
Megan Shapland Wenchang Qi |
Jiaming Xu | proposal1.pdf |
Adherascent |
| # Adherescent (Team 2) Auto Time Setting Scent Reminder Team Members: - Megan Shapland (meganls2) - Wenchang Qi (qi14) # Problem Daily Medication is imperative to health, but is often easy to forget as we grow older and the reliability of our memories, sight, and sound decrease. Traditional medication reminders are lost in the frenzy of notifications and sounds that we experience on a daily basis. (As presented by Gaurav Nigam and Brian Mehdian at Adherescent ) There also is an ease of use problem. Many adaptive devices are not adopted due to the intimidation of learning to work with a new technology, particularly with time setting and confusing user interfaces. # Solution We propose a smart pill dispenser that utilizes scent as the primary notification mechanism. The system is built around a custom-designed PCB integrating an ESP32 microcontroller module. This allows for Wi-Fi connectivity, enabling time synchronization and remote scheduling potential. When a scheduled dose is due, the system triggers a scent release mechanism. The scent persists until the user opens the correct pill compartment. We will achieve the scent generation by electronically interfacing with and controlling a commercial aroma diffuser. The system will also employ magnetic sensors to detect the precise open/closed state of each medication compartment to close the feedback loop. # Solution Components ## Subsystem 1: Custom Control Electronics (PCB Design) This subsystem is the central processing unit of the device. Instead of using a pre-made development board, we will design and fabricate a custom PCB to ensure a compact form factor and specific power requirements. * Microcontroller: An ESP32 Module will be used as the core processor to handle logic and Wi-Fi connectivity. * Power Management: The PCB will include a Voltage Regulator circuit to step down the external power supply (5V USB) to the voltage required by the logic circuits (3.3V). * Programming Interface: A UART interface will be exposed on the PCB to allow firmware flashing and debugging via an external serial adapter. ## Subsystem 2: Olfactory Notification Interface This subsystem is responsible for generating the scent alert. We will adopt a system integration approach to leverage existing reliable atomization technology. * Primary Approach (Commercial Integration): We will reverse-engineer a commercially available Ultrasonic Aroma Diffuser. The control signals of the diffuser will be intercepted and managed by our main PCB. * Isolation Circuit: To safely interface the low-voltage ESP32 logic with the potentially higher-voltage circuit of the commercial diffuser, we will design an Optocoupler Isolation Circuit on our PCB. This acts as an electronic switch, simulating physical button presses to trigger the scent without electrical risk to the microcontroller. * Backup Approach (Thermal Diffusion): In the event that the commercial unit cannot be successfully integrated due to space constraints, we will implement a fallback mechanism using Thermal Diffusion. This involves a PTC Heating Element driven by a MOSFET on our PCB to gently heat a scent-infused pad, promoting rapid evaporation. ## Subsystem 3: Compartment State Detection This subsystem verifies user compliance by monitoring the physical state of the pill box lids. * Sensors: We will utilize Hall Effect Sensors placed on the PCB or routed to individual compartments. These non-contact sensors offer superior durability compared to mechanical switches. * Triggers: Small permanent magnets will be embedded into the lid of each pill compartment. * Logic: The system will read the sensor state to determine if the correct compartment has been opened. If confirmed, the microcontroller will immediately send a signal to stop the scent generation. # Criterion For Success 1. Scheduling Reliability: The device must trigger the scent notification within 5 seconds of the scheduled medication time. 2. Scent Control: The system must successfully turn on the external diffuser via the custom isolation circuit and turn it off automatically when the pill box is opened. 3. Sensor Accuracy: The Hall Effect sensors must detect the Open and Closed states of the compartment with 100% accuracy across consecutive test trials. 4. PCB Functionality: The custom-designed PCB must successfully power the ESP32 module and handle the logic levels without overheating or resetting due to power fluctuations. |
|||||