Project

# Title Team Members TA Documents Sponsor
58 Adherescent (Team 2) Auto Time Setting Scent Reminder
Megan Shapland
Wenchang Qi
Jiaming Xu proposal1.pdf
Adherascent
# Adherescent (Team 2) Auto Time Setting Scent Reminder

Team Members:
- Megan Shapland (meganls2)
- Wenchang Qi (qi14)

# Problem

Daily Medication is imperative to health, but is often easy to forget as we grow older and the reliability of our memories, sight, and sound decrease. Traditional medication reminders are lost in the frenzy of notifications and sounds that we experience on a daily basis. (As presented by Gaurav Nigam and Brian Mehdian at Adherescent ) There also is an ease of use problem. Many adaptive devices are not adopted due to the intimidation of learning to work with a new technology, particularly with time setting and confusing user interfaces.

# Solution

We propose a smart pill dispenser that utilizes scent as the primary notification mechanism. The system is built around a custom-designed PCB integrating an ESP32 microcontroller module. This allows for Wi-Fi connectivity, enabling time synchronization and remote scheduling potential. When a scheduled dose is due, the system triggers a scent release mechanism. The scent persists until the user opens the correct pill compartment. We will achieve the scent generation by electronically interfacing with and controlling a commercial aroma diffuser. The system will also employ magnetic sensors to detect the precise open/closed state of each medication compartment to close the feedback loop.

# Solution Components

## Subsystem 1: Custom Control Electronics (PCB Design)

This subsystem is the central processing unit of the device. Instead of using a pre-made development board, we will design and fabricate a custom PCB to ensure a compact form factor and specific power requirements.

* Microcontroller: An ESP32 Module will be used as the core processor to handle logic and Wi-Fi connectivity.
* Power Management: The PCB will include a Voltage Regulator circuit to step down the external power supply (5V USB) to the voltage required by the logic circuits (3.3V).
* Programming Interface: A UART interface will be exposed on the PCB to allow firmware flashing and debugging via an external serial adapter.

## Subsystem 2: Olfactory Notification Interface

This subsystem is responsible for generating the scent alert. We will adopt a system integration approach to leverage existing reliable atomization technology.

* Primary Approach (Commercial Integration): We will reverse-engineer a commercially available Ultrasonic Aroma Diffuser. The control signals of the diffuser will be intercepted and managed by our main PCB.
* Isolation Circuit: To safely interface the low-voltage ESP32 logic with the potentially higher-voltage circuit of the commercial diffuser, we will design an Optocoupler Isolation Circuit on our PCB. This acts as an electronic switch, simulating physical button presses to trigger the scent without electrical risk to the microcontroller.
* Backup Approach (Thermal Diffusion): In the event that the commercial unit cannot be successfully integrated due to space constraints, we will implement a fallback mechanism using Thermal Diffusion. This involves a PTC Heating Element driven by a MOSFET on our PCB to gently heat a scent-infused pad, promoting rapid evaporation.

## Subsystem 3: Compartment State Detection

This subsystem verifies user compliance by monitoring the physical state of the pill box lids.

* Sensors: We will utilize Hall Effect Sensors placed on the PCB or routed to individual compartments. These non-contact sensors offer superior durability compared to mechanical switches.
* Triggers: Small permanent magnets will be embedded into the lid of each pill compartment.
* Logic: The system will read the sensor state to determine if the correct compartment has been opened. If confirmed, the microcontroller will immediately send a signal to stop the scent generation.


# Criterion For Success

1. Scheduling Reliability: The device must trigger the scent notification within 5 seconds of the scheduled medication time.
2. Scent Control: The system must successfully turn on the external diffuser via the custom isolation circuit and turn it off automatically when the pill box is opened.
3. Sensor Accuracy: The Hall Effect sensors must detect the Open and Closed states of the compartment with 100% accuracy across consecutive test trials.
4. PCB Functionality: The custom-designed PCB must successfully power the ESP32 module and handle the logic levels without overheating or resetting due to power fluctuations.

Healthy Chair

Ryan Chen, Alan Tokarsky, Tod Wang

Healthy Chair

Featured Project

Team Members:

- Wang Qiuyu (qiuyuw2)

- Ryan Chen (ryanc6)

- Alan Torkarsky(alanmt2)

## Problem

The majority of the population sits for most of the day, whether it’s students doing homework or

employees working at a desk. In particular, during the Covid era where many people are either

working at home or quarantining for long periods of time, they tend to work out less and sit

longer, making it more likely for people to result in obesity, hemorrhoids, and even heart

diseases. In addition, sitting too long is detrimental to one’s bottom and urinary tract, and can

result in urinary urgency, and poor sitting posture can lead to reduced blood circulation, joint

and muscle pain, and other health-related issues.

## Solution

Our team is proposing a project to develop a healthy chair that aims at addressing the problems

mentioned above by reminding people if they have been sitting for too long, using a fan to cool

off the chair, and making people aware of their unhealthy leaning posture.

1. It uses thin film pressure sensors under the chair’s seat to detect the presence of a user,

and pressure sensors on the chair’s back to detect the leaning posture of the user.

2. It uses a temperature sensor under the chair’s seat, and if the seat’s temperature goes

beyond a set temperature threshold, a fan below will be turned on by the microcontroller.

3. It utilizes an LCD display with programmable user interface. The user is able to input the

duration of time the chair will alert the user.

4. It uses a voice module to remind the user if he or she has been sitting for too long. The

sitting time is inputted by the user and tracked by the microcontroller.

5. Utilize only a voice chip instead of the existing speech module to construct our own

voice module.

6. The "smart" chair is able to analyze the situation that the chair surface temperature

exceeds a certain temperature within 24 hours and warns the user about it.

## Solution Components

## Signal Acquisition Subsystem

The signal acquisition subsystem is composed of multiple pressure sensors and a temperature

sensor. This subsystem provides all the input signals (pressure exerted on the bottom and the

back of the chair, as well as the chair’s temperature) that go into the microcontroller. We will be

using RP-C18.3-ST thin film pressure sensors and MLX90614-DCC non-contact IR temperature

sensor.

## Microcontroller Subsystem

In order to achieve seamless data transfer and have enough IO for all the sensors we will use

two ATMEGA88A-PU microcontrollers. One microcontroller is used to take the inputs and

serves as the master, and the second one controls the outputs and acts as the slave. We will

use I2C communication to let the two microcontrollers talk to each other. The microcontrollers

will also be programmed with the ch340g usb to ttl converter. They will be programmed outside

the board and placed into it to avoid over cluttering the PCB with extra circuits.

The microcontroller will be in charge of processing the data that it receives from all input

sensors: pressure and temperature. Once it determines that there is a person sitting on it we

can use the internal clock to begin tracking how long they have been sitting. The clock will also

be used to determine if the person has stood up for a break. The microcontroller will also use

the readings from the temperature sensor to determine if the chair has been overheating to turn

on the fans if necessary. A speaker will tell the user to get up and stretch for a while when they

have been sitting for too long. We will use the speech module to create speech through the

speaker to inform the user of their lengthy sitting duration.

The microcontroller will also be able to relay data about the posture to the led screen for the

user. When it’s detected that the user is leaning against the chair improperly for too long from

the thin film pressure sensors on the chair back, we will flash the corresponding LEDs to notify

the user of their unhealthy sitting posture.

## Implementation Subsystem

The implementation subsystem can be further broken down into three modules: the fan module,

the speech module, and the LCD module. This subsystem includes all the outputs controlled by

the microcontroller. We will be using a MF40100V2-1000U-A99 fan for the fan module,

ISD4002-240PY voice record chip for the speech module, and Adafruit 1.54" 240x240 Wide

Angle TFT LCD Display with MicroSD - ST7789 LCD display for the OLED.

## Power Subsystem

The power subsystem converts 120V AC voltage to a lower DC voltage. Since most of the input

and output sensors, as well as the ATMEGA88A-PU microcontroller operate under a DC voltage

of around or less than 5V, we will be implementing the power subsystem that can switch

between a battery and normal power from the wall.

## Criteria for Success

-The thin film pressure sensors on the bottom of the chair are able to detect the pressure of a

human sitting on the chair

-The temperature sensor is able to detect an increase in temperature and turns the fan as

temperature goes beyond our set threshold temperature. After the temperature decreases

below the threshold, the fan is able to be turned off by the microcontroller

-The thin film pressure sensors on the back of the chair are able to detect unhealthy sitting

posture

-The outputs of the implementation subsystem including the speech, fan, and LCD modules are

able to function as described above and inform the user correctly

## Envision of Final Demo

Our final demo of the healthy chair project is an office chair with grids. The office chair’s back

holds several other pressure sensors to detect the person’s leaning posture. The pressure and

temperature sensors are located under the office chair. After receiving input time from the user,

the healthy chair is able to warn the user if he has been sitting for too long by alerting him from

the speech module. The fan below the chair’s seat is able to turn on after the chair seat’s

temperature goes beyond a set threshold temperature. The LCD displays which sensors are

activated and it also receives the user’s time input.

Project Videos