Project
| # | Title | Team Members | TA | Documents | Sponsor |
|---|---|---|---|---|---|
| 1 | Mobile Hive Checker |
Fiona Cashin Olivia Guido Rawda Abdeltawab |
|||
| # Team Members: - Fiona Cashin (fcashin2) - Olivia Guido (ojguido2) - Rawda Abdeltawab (rawdaka2) # Problem Beekeepers must routinely monitor hive conditions to maintain healthy colonies. However, manually opening a hive significantly stresses the bees and disrupts their environment, and frequent disturbances can negatively affect bee behavior and productivity. On the other hand, insufficient monitoring can lead to swarming or freezing, resulting in the loss of an entire colony. Each lost colony can cost a beekeeper between $100 and $200. This highlights the need for a non-invasive solution for assessing the health of multiple hives, while minimizing stress on the bees. Although monitoring systems are available, they typically cost around $100 per hive, and many of the leading companies in this space are headquartered in Europe. # Solution The proposed solution is a portable device that enables beekeepers to monitor a colony’s health without opening the hive. A small sensor probe is inserted into the hive entrance to collect internal environmental data while the main unit remains outside. The device displays active sensor readings on an integrated screen and indicates whether hive conditions fall within acceptable ranges, such as temperatures between 70 and 97 degrees Fahrenheit. This approach minimizes hive disturbance while still providing essential health data including temperature, humidity, and carbon dioxide levels. # Solution Components ## Subsystem 1, Temperature and Humidity Monitoring This subsystem measures the internal temperature and humidity of the beehive. Maintaining proper temperature is critical for hive health, as bee eggs will not develop and adult bees may die if the internal temperature falls outside the range between 70 and 97 degrees Fahrenheit. Humidity levels must remain between 50 percent and 60 percent to allow nectar to dry into honey. Excess humidity can promote pest reproduction, while insufficient humidity can cause bee eggs to dehydrate. The device will use a temperature and humidity sensor connected via a long cable, allowing the sensor to be inserted into the hive while the user holds the device externally. The sensor will interface with a microcontroller unit (MCU), which will process the data and display the readings on an LCD screen. The MCU will evaluate whether the temperature and humidity values fall within the acceptable ranges. If the readings are normal, the display will show “PASSED.” If any reading is outside the normal range, the display will show “FAILED.” Components: - Digital Temperature Humidity Sensor : HiLetgo DHT21 - Microcontroller Unit (MCU) : ESP32-C3-WROOM-02 - Liquid Crystal Display (LCD) : B0DN9NMBFW (GODIYMODULES) or B0BWTFN9WF (Hosyond) ## Subsystem 2, Carbon Dioxide Monitoring This subsystem measures the carbon dioxide concentration within the hive. In a beehive, CO2 levels can be tolerated to a level of 8 percent, with higher levels indicating overcrowding and poor ventilation. The device will include a CO2 sensor connected via cable to the same MCU. The MCU will record the CO2 levels and display the results on the LED. As with the temperature and humidity subsystem, the MCU will determine whether the CO2 level is within the acceptable range and display “PASSED” or “FAILED” accordingly. Components: - CO2 Sensor : HiLetgo MHZ19 - Microcontroller Unit (MCU) : ESP32-C3-WROOM-02 - Liquid Crystal Display (LCD) : B0DN9NMBFW (GODIYMODULES) or B0BWTFN9WF (Hosyond) ## Subsystem 3, Microcontroller and Logic The microcontroller coordinates all the subsystems and implements a Finite State Machine (FSM). The MCU runs embedded C firmware that defines an FSM with at least four states, including “Start”, “Reset”, “Testing”, and “Done”. During the “Testing” state, sensor data is acquired via the appropriate communication protocols. Once testing is complete, the collected data is displayed on the LCD, allowing the user to assess the overall health of the hive. The MCU compares the data with the specified range to determine if the data is within range. This will prompt either a passed or failed responses to be displayed on the device Components: -Microcontroller Unit (MCU) : ESP32- option could be Espressif ESP32-C3-WROOM-02 which has RISC-V 32 bit CPU, antenna built-in, bluetooth, WIFI -Programming Interface: use USB to upload code. USB can either charge battery/upload code, Arduino IDE platform -Rest Button: PTS645SL43-2 LFS, resting the data on LCD to test another hive -Power ON Button: PTS645SL43-2 LFS -Liquid Crystal Display (LCD): B0DN9NMBFW (GODIYMODULES) or B0BWTFN9WF (Hosyond) # Criterion For Success - The humidity sensor accurately measures humidity. - The temperature sensor accurately measures temperature. - The display correctly shows the measured temperature. - The display correctly shows the measured humidity. - The display turns on when the ON button is pressed. - A Start screen is shown when the ON button is pressed. - A Testing screen is shown after the Start screen. - A Done screen is displayed when the ON button is pressed the second time. - A Reset Screen is displayed when the reset button is pressed. - The display correctly shows “PASSED” and “FAILED.” - The display shows “PASSED” when all sensor readings are within normal ranges. - The display shows “FAILED” when at least one sensor reading is outside the normal range. - Final product tested on multiple hives. |
|||||