Project

# Title Team Members TA Documents Sponsor
19 Suction Sense - Pitch Project
Hugh Palin
Jeremy Lee
Suleymaan Ahmad
Lukas Dumasius design_document1.pdf
other2.pdf
presentation1.pdf
proposal1.pdf
Team Members:

Hugh Palin (hpalin2) Jeremy Lee (jeremy10) Suleymaan Ahmad (sahma20)

**Problem**

Currently, suction is unnecessarily left on for approximately 35% of the runtime in operating rooms. This results in wasted energy, increased maintenance costs, reduced equipment lifespan, and unnecessary electricity consumption. At present, there is no mechanism to detect or alert staff when suction is left running unnecessarily (such as overnight when no surgeries are in progress).

**Solution**

We propose a system composed of two hardware components and one software component. The first hardware module will attach to the medical gas shut-off valves, where it will monitor suction pressure and wirelessly transmit the data. A second hardware component will receive and store this data. On the software side, we will develop an application that takes in suction usage data and cross-references it with the hospital’s operating room schedule (retrieved from the Epic system). The application will display a UI showing which operating rooms are currently in use and whether suction is active. Color coding will clearly indicate if suction has been left on unnecessarily.

**Solution Components**

Microprocessor

For this project, we plan to use an ESP32-WROOM-32 module as the microcontroller. We chose this module for its small form factor and wifi and bluetooth capability, which gives us flexibility in how we transmit the suction data. It is also extremely inexpensive, which is important considering hospitals operate on a limited budget and our module needs to be deployed in each operating room. Finally, the ESP32 features extensive open-source libraries, documentation, and community support, which will significantly simplify the development process.

Pressure Transducer

The Transducers Direct TDH31 pressure transducer will be used to monitor real-time suction. It works by converting vacuum pressure into an electrical signal readable by the ESP32. We chose this module for its compatibility with medical suction ranges, compact design for easy integration, and reliability in continuous-use environments. The sensor’s analog output provides a simple and accurate way to track suction status with minimal additional circuitry.


BLE Shield

The HM-19 BLE module will be used to relay suction data from the ESP32 to the Raspberry Pi. This module supports Bluetooth Low Energy 4.2, providing reliable short-range communication while consuming minimal power, which is critical for continuous monitoring in hospital settings. Its compact footprint and simple UART interface make it easy to integrate with the ESP32 without adding unnecessary complexity.


Raspberry Pi Display Module

The Raspberry Pi 4 Model B paired with the Raspberry Pi 7″ Touchscreen Display will serve as the central monitoring and alert system. The Raspberry Pi was chosen for its quad-core processing power, extensive I/O support, and strong software ecosystem, making it well-suited to run the suction monitoring application and integrate with the Epic scheduling system. The 7″ touchscreen will allow the module to be mounted in the hallway, providing an interface that allows staff to quickly view operating room suction status, with clear color-coded indicators and alerts. This combination also enables both visual and audio notifications when suction is unnecessarily left on, ensuring staff can respond promptly.

Software Application

The application will run on the Raspberry Pi and serve as the central hub for data processing and visualization. It will collect suction pressure readings from the ESP32 via the HM-19 BLE module and compare this data against the hospital’s operating room schedule retrieved through the Epic system. A color-coded interface on the Raspberry Pi touchscreen will clearly show which operating rooms are in use, whether suction is active, and show where suction has been unnecessarily left on.

**Criteria for Success:**

Our system must remain cost-effective, with a total component cost under $1,200 per unit to align with hospital budgets. The hardware module must securely attach to suction shut-off valves, remain compact, and accurately detect suction levels using an. Data must be reliably transmitted to a Raspberry Pi 4 Model B, which will also pull operating room schedules from the Epic system. Finally, the touchscreen application must clearly display suction status with color coding and issue real-time alerts when suction is left on unnecessarily.

Electricity-Generating Device Retrofitted for Spin Bikes with Wall Outlet Plug Connected to Gym's Grid

Raihana Hossain, Elisa Krause, Tiffany Wang

Electricity-Generating Device Retrofitted for Spin Bikes with Wall Outlet Plug Connected to Gym's Grid

Featured Project

**Elisa Krause (elisak2), Raihana Hossain (rhossa2), Tiffany Wang (tw22)**

**Problem:** Something we take for granted everyday is energy. Constantly, there is energy consumption in malls, offices, schools, and gyms. However, the special thing about gyms is that there is always someone using either the elliptical, bike or etc. Now what if, along with losing those extra pounds, you can also generate some electricity using these machines? Our device is a straightforward and cheap alternative for gyms to have retrofitted spin bikes that generate electricity, and for the gym to save money by using the electricity generated by the bikes that can be connected to the gym’s grid by simply plugging the device into the wall outlet.

**Solution Overview:** We are retrofitting a spin bike with an electricity-generating device that can be plugged into the wall outlet, which will be the path to send the generated electricity back to the gym’s grid to be used. The amount of electricity generated can also be monitored and displayed with the device.

**Solution Components:**

* **[Retrofit for Electricity Generation]** Component that attaches to any spin bike on the outside (straightforward and simple retrofit) and generates electricity when the bike is being used.

* **[Send Power to Gym Grid]** Component that reverses the typical direction of the wall outlet and sends the energy generated by the bike riders back to the gym’s power grid.

* **[Metering]** Component that records and displays how much energy was generated between the times when someone presses a button on the device. The first button press will reset the display. The second button press will show how much energy was generated from the time when the button was first pressed.

**Criterion for success:**

* Retrofits any (or the majority of) spin bike types

* Energy generated from people working out on the spin bikes is sent from a wall outlet to the gym’s power grid

* Device displays the power generated by a bike during the time of two button presses.

* Show that our power output being generated matches and syncs up with a sinusoidal input using a mock setup to simulate the grid

Project Videos