Project

# Title Team Members TA Documents Sponsor
24 Four Point Probe
Dorian Tricaud
Ming-Yan Hsiao
Simon Danthinne
Dongming Liu design_document1.pdf
proposal1.pdf
proposal2.pdf
# Four Point Probe

Team Members:
Simon Danthinne(simoned2)
Ming-Yan Hsiao(myhsiao2)
Dorian Tricaud (tricaud2)

# Problem:

In the manufacturing process of semiconductor wafers, numerous pieces of test equipment are essential to verify that each manufacturing step has been correctly executed. This requirement significantly raises the cost barrier for entering semiconductor manufacturing, making it challenging for students and hobbyists to gain practical experience. To address this issue, we propose developing an all-in-one four-point probe setup. This device will enable users to measure the surface resistivity of a wafer, a critical parameter that can provide insights into various properties of the wafer, such as its doping level. By offering a more accessible and cost-effective solution, we aim to lower the entry barriers and facilitate hands-on learning and experimentation in semiconductor manufacturing.

# Solution:

Our design will use an off-the-shelf four point probe head for the precision manufacturing tolerances which will be used for contact with the wafer. This wafer contact solution will then be connected to a current source precisely controlled by an IC as well as an ADC to measure the voltage. For user interface, we will have an array of buttons for user input as well as an LCD screen to provide measurement readout and parameter setup regarding wafer information. This will allow us to make better approximations for the wafer based on size and doping type.

# Solution Components:

## Subsystem 1: Measurement system
We will utilize a four-point probe head (HPS2523) with 2mm diameter gold tips to measure the sheet resistance of the silicon wafer. A DC voltage regulator (DIO6905CSH3) will be employed to force current through the two outer tips, while a 24-bit ADC (MCP3561RT-E/ST) will measure the voltage across the two inner tips, with expected measurements in the millivolt range and current operation lasting several milliseconds. Additionally, we plan to use an AC voltage regulator (TPS79633QDCQRQ1) to transiently sweep the outer tips to measure capacitances between them, which will help determine the dopants present. To accurately measure the low voltages, we will amplify the signal using an JFET op-amp (OPA140AIDGKR) to ensure it falls within the ADC’s specifications. Using these measurements, we can apply formulas with corrections for real-world factors to calculate the sheet resistance and other parameters of the wafer.




## Subsystem 2: User Input

To enable users to interact effectively with the measurement system, we will implement an array of buttons that offer various functions such as calibration, measurement setup, and measurement polling. This interface will let users configure the measurement system to ensure that the approximations are suitable for the specific properties of the wafer. The button interface will provide users with the ability to initiate calibration routines to ensure accuracy and reliability, and set up measurements by defining parameters like type, range, and size tailored to the wafer’s characteristics. Additionally, users can poll measurements to start, stop, and monitor ongoing measurements, allowing for real-time adjustments and data collection. The interface also allows users to make approximations regarding other wafer properties so the user can quickly find out more information on their wafer. This comprehensive button interface will make the measurement system user-friendly and adaptable, ensuring precise and efficient measurements tailored to the specific needs of each wafer.

## Subsystem 3: Display

To provide output to users, we will utilize a monochrome 2.4 inch 128x64 OLED LCD display driven over SPI from the MCU. This display will not only present data clearly but also serve as an interface for users to interact with the device. The monochrome LCD will be instrumental in displaying measurement results, system status, and other relevant information in a straightforward and easy-to-read format. Additionally, it will facilitate user interaction by providing visual feedback during calibration, measurement setup, and polling processes. This ensures that users can efficiently navigate and operate the device, making the overall experience intuitive and user-friendly.

# Criterion for Success:
A precise constant current can be run through the wafer for various samples
Measurement system can identify voltage (10mV range minimum) across wafer
Measurement data and calculations can be viewed on LCD
Button inputs allow us to navigate and setup measurement parameters
Total part cost per unit must be less than cheapest readily available four point probes (≤ 650 USD)

Low Cost Distributed Battery Management System

Logan Rosenmayer, Daksh Saraf

Low Cost Distributed Battery Management System

Featured Project

Web Board Link: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27207

Block Diagram: https://imgur.com/GIzjG8R

Members: Logan Rosenmayer (Rosenma2), Anthony Chemaly(chemaly2)

The goal of this project is to design a low cost BMS (Battery Management System) system that is flexible and modular. The BMS must ensure safe operation of lithium ion batteries by protecting the batteries from: Over temperature, overcharge, overdischarge, and overcurrent all at the cell level. Additionally, the should provide cell balancing to maintain overall pack capacity. Last a BMS should be track SOC(state of charge) and SOH (state of health) of the overall pack.

To meet these goals, we plan to integrate a MCU into each module that will handle measurements and report to the module below it. This allows for reconfiguration of battery’s, module replacements. Currently major companies that offer stackable BMSs don’t offer single cell modularity, require software adjustments and require sense wires to be ran back to the centralized IC. Our proposed solution will be able to remain in the same price range as other centralized solutions by utilizing mass produced general purpose microcontrollers and opto-isolators. This project carries a mix of hardware and software challenges. The software side will consist of communication protocol design, interrupt/sleep cycles, and power management. Hardware will consist of communication level shifting, MCU selection, battery voltage and current monitoring circuits, DC/DC converter all with low power draws and cost. (uAs and ~$2.50 without mounting)