Project

# Title Team Members TA Documents Sponsor
61 Stick On Car Proximity Sensor
Aryan Damani
Raunak Bathwal
Shrijan Sathish
Angquan Yu final_paper1.pdf
other1.pdf
photo1.jpg
presentation1.pptx
proposal1.pdf
Team Members:
Shrijan Sathish (shrijan2)
Aryan Damani (aryansd2)
Raunak Bathwal (raunakb2)

# Problem

Describe the problem you want to solve and motivate the need.

Many older cars lack proximity sensors that let the user know how close their car is to various obstacles, whether it be their garages, parking spot walls, or even curbs. Though this can be handled through various tricks of knowing where to look in the rearview or side mirrors to know where the front, sides, or back of the car is with respect to walls and other obstacles, it is always better to be sure. We aim to solve this inconvenience that comes with older model cars.

# Solution

Describe your design at a high-level, how it solves the problem, and introduce the subsystems of your project.

Our solution involves using 4 proximity sensors that can be placed on each corner of the car, with a receiver that can be placed inside the car. These will be linked through bluetooth and the receiver itself will also contain 4 lights on each of its corners. This will correspond with each sensor placed, and light up as well as produce an auditory cue (most likely small “beeps”) to alert the user how close they are to an obstacle and where it is. The closer you are to an obstacle, the faster the frequency of the beeps.



# Solution Components

## Subsystem 1: Proximity Sensor
The first, and main system, will be the sensors placed all around the car. Each module will be the same, regardless of where on the car it is placed. Each module will consist of 1-3 ultrasonic sensors(HC-SR04) based on their predicted placement on the vehicle, our custom PCB, a small watch battery, and a wireless RF transceiver (WRL-10534). The module will constantly transmit distance data to the receiver module located within the vehicle to make sure the driver is aware of how close they may be to any potential obstacles.

## Subsystem 2: Receiver

The receiver subsystem will be located within the vehicle, consisting of an RF receiver (WRL-10534) to communicate with the above proximity sensors, a power adapter to get power from the USB/car power, and a microcontroller(ATmega328P) to read input from proximity sensors, and output signals to control the lights and speakers over bluetooth using a bluetooth module (CC2541F256TRHATQ1) if necessary and if the vehicle is too close to an object.

## Subsystem 3: Lights + Speaker
The light and speaker system will consist of a small speaker that we have that will change frequency based on how close an object is, combined with a set of red LED diodes to represent which sensor is being triggered so the driver knows which direction to avoid.

# Criterion For Success

Our criterion for success will be testing with an actual car, where we reach a constant beep when we reach a distance of less than one foot to an obstacle, which will be our reassurance that the sensors work. Our second criterion for success is to get someone to use the system and determine if they are able to stop before/avoid obstacles with a relatively safe margin of error.




Smart Frisbee

Ryan Moser, Blake Yerkes, James Younce

Smart Frisbee

Featured Project

The idea of this project would be to improve upon the 395 project ‘Smart Frisbee’ done by a group that included James Younce. The improvements would be to create a wristband with low power / short range RF capabilities that would be able to transmit a user ID to the frisbee, allowing the frisbee to know what player is holding it. Furthermore, the PCB from the 395 course would be used as a point of reference, but significantly redesigned in order to introduce the transceiver, a high accuracy GPS module, and any other parts that could be modified to decrease power consumption. The frisbee’s current sensors are a GPS module, and an MPU 6050, which houses an accelerometer and gyroscope.

The software of the system on the frisbee would be redesigned and optimized to record various statistics as well as improve gameplay tracking features for teams and individual players. These statistics could be player specific events such as the number of throws, number of catches, longest throw, fastest throw, most goals, etc.

The new hardware would improve the frisbee’s ability to properly moderate gameplay and improve “housekeeping”, such as ensuring that an interception by the other team in the end zone would not be counted as a score. Further improvements would be seen on the software side, as the frisbee in it’s current iteration will score as long as the frisbee was thrown over the endzone, and the only way to eliminate false goals is to press a button within a 10 second window after the goal.