Project

# Title Team Members TA Documents Sponsor
56 Smart AC Units
Kevin Zhang
Vineeth Kalister
Xavier Oliva
Douglas Yu design_document1.docx
design_document2.pdf
final_paper1.pdf
proposal2.pdf
proposal1.pdf
# TEAM MEMBERS:

Kevin Zhang - kevinhz2
Vineeth Kalister - vkalis2
Xavier Oliva - xoliva2

# **PROBLEM:**
In the United States, about a third of homes lack a central air conditioning system. While some homes are in climates where they do not need an air conditioning solution, the vast majority of other homes rely on window units for their air conditioning. This is especially true in communities with older homes, such as New York City and Boston. Many older homes use “dumb” wall-mounted AC units that are inefficient and manually set. We want to target these homes and make them more efficient through “smart” AC control units. Although there exist “smart” wall-mounted units, these are often equipped with proprietary solutions that work with few systems, or are expensive devices to modulate the voltage going inside the AC unit without changing the settings of the unit. With our Smart AC Unit system, we believe that we can accomplish a more efficient and equitable experience for those with window unit ACs and ensure optimal ease of access as well as a lower power bill. As the central air conditioning market advances in the technology available to make the air conditioning experience easier, such advances and improvements are lacking in homes that do not have central air conditioning. While there are systems in the market that allow you to have your central air conditioning system interact with voice assistants or other AI services, window unit users are stuck with simple knobs and switches. The few smart devices that do interface with window units are typically proprietary designs that work with specific higher priced designs or are devices that simply modulate voltage going into the AC system.


# SOLUTION:
Our proposal is a multi-part system combining temperature sensors, servo motors, and central control units to allow for wall-mount ACs to be automatically controlled through an application on one’s smart device. The device will be able to latch on top of the knobs of a window unit AC and, with the help of the User Application available on their mobile device, be able to adjust the knobs remotely to the settings of the user’s choosing.
The main system relies on sensor units, control units, and mobile devices. The prototype device will be tested on a 5000 BTU Arctic King window air conditioner.

# SOLUTION COMPONENTS:
Air Conditioner System (Smart AC device)
## Power Unit
The Smart AC itself will need to be powered with enough voltage to be able to power the two motors responsible for turning the knobs on an 5,000 BTU Arctic King window air conditioner as well the temperature and air quality sensors.

## Sensor Unit

The Smart AC device will be equipped with a temperature sensor in order to read the temperature of the room, and thus, regulate the temperature to the temperature selected by the User Application. The Smart AC device will also be equipped with an air quality sensor which enables the air quality of the room to be read and communicated to the user through the User Application.

## Control Unit

The control unit of the Smart AC device system will be capable of changing the settings of both the temperature and cooling knobs of the Arctic King window air conditioner. If the temperature set by the User Application is higher or lower than that measured by the Sensor Unit, the Control Unit is responsible for adjusting the air conditioner settings to ensure that the room temperature stays constant.

** Mobile Device System (User Application)**
## UI Unit
The user applications contain all the necessary features to read the current room temperature, turn on/off the AC system, change and schedule temperatures, change fan speeds, etc.
## Control Unit
The user application will be able to communicate with the Smart AC device via bluetooth and/or Wi-Fi.

CRITERIA FOR SUCCESS:
- The AC Unit can be controlled and changed
- The sensor unit can accurately read the current room temperature
- Mobile Devices able to communicate with the AC System
- Change AC temperature whenever and wherever via one’s smart device
- Automatically set time ranges for AC use to increase the efficiency of the unit

Master Bus Processor

Clay Kaiser, Philip Macias, Richard Mannion

Master Bus Processor

Featured Project

General Description

We will design a Master Bus Processor (MBP) for music production in home studios. The MBP will use a hybrid analog/digital approach to provide both the desirable non-linearities of analog processing and the flexibility of digital control. Our design will be less costly than other audio bus processors so that it is more accessible to our target market of home studio owners. The MBP will be unique in its low cost as well as in its incorporation of a digital hardware control system. This allows for more flexibility and more intuitive controls when compared to other products on the market.

Design Proposal

Our design would contain a core functionality with scalability in added functionality. It would be designed to fit in a 2U rack mount enclosure with distinct boards for digital and analog circuits to allow for easier unit testings and account for digital/analog interference.

The audio processing signal chain would be composed of analog processing 'blocks’--like steps in the signal chain.

The basic analog blocks we would integrate are:

Compressor/limiter modes

EQ with shelf/bell modes

Saturation with symmetrical/asymmetrical modes

Each block’s multiple modes would be controlled by a digital circuit to allow for intuitive mode selection.

The digital circuit will be responsible for:

Mode selection

Analog block sequence

DSP feedback and monitoring of each analog block (REACH GOAL)

The digital circuit will entail a series of buttons to allow the user to easily select which analog block to control and another button to allow the user to scroll between different modes and presets. Another button will allow the user to control sequence of the analog blocks. An LCD display will be used to give the user feedback of the current state of the system when scrolling and selecting particular modes.

Reach Goals

added DSP functionality such as monitoring of the analog functions

Replace Arduino boards for DSP with custom digital control boards using ATmega328 microcontrollers (same as arduino board)

Rack mounted enclosure/marketable design

System Verification

We will qualify the success of the project by how closely its processing performance matches the design intent. Since audio 'quality’ can be highly subjective, we will rely on objective metrics such as Gain Reduction (GR [dB]), Total Harmonic Distortion (THD [%]), and Noise [V] to qualify the analog processing blocks. The digital controls will be qualified by their ability to actuate the correct analog blocks consistently without causing disruptions to the signal chain or interference. Additionally, the hardware user interface will be qualified by ease of use and intuitiveness.

Project Videos