Project

# Title Team Members TA Documents Sponsor
34 SELF ADJUSTING VOLUME PEDAL
Chris Jurczewski
Noah DuVal
Norbert Lazarz
Nithin Balaji Shanthini Praveena Purushothaman design_document2.pdf
final_paper1.pdf
photo3.jpg
photo1.jpg
presentation1.pdf
proposal2.pdf
Team Members:
- nlazarz2
- nbduval2
- cmj7

# Problem

One problem with adjusting volume manually is that it's tedious and often causes changes in the tone of the amp. Another problem this poses is during live performances, when you would like guitars to be less or more prominent when playing different songs, there is no way for the player themselves to adjust themselves without relying on someone mixing during their set. Volume is also room dependent so changing locations will result in the volume being changed which can often be unwanted.

# Solution

To solve these problems we propose a pedal that will adjust the volume of the amp’s output depending on the chosen decibel setting located on the pedal. This project will have two subsystems that will work together to collect, process, and alter the output of the amp. The first subsystem is the pedal itself which will allow the user to select the desired dB setting they would like to hear. The second is the microphone attachment to the guitar which will collect auditory data from the amp and transmit it wirelessly to the pedal. After the pedal receives the signal it will filter out the unnecessary frequencies and bring the volume of the signal up to the preset number and keep that volume wherever the player is.

# Solution Components

## Pedal Subsystem

The pedal itself will contain the main PCB which will be in charge of taking in readings from microphones on the guitar. The microcontroller will then be programmed to filter the audio so there is as little noise as possible and will not consider frequencies outside a guitar’s range. It will then use these readings to determine the level of volume it tells the amp to output. This will be determined by averaging the sound over a certain period of time and bringing it up to the preset number on the pedal depending on the distance of the player.

- Possibly looking at using the ESP32-S3 Microcontroller due to its built in wifi and bluetooth capabilities that we would like to use to communicate between the microphone and custom pcb
- A multitude of resistors, capacitors and OpAmps to create an analog noise filter before the digital filter to remove general ambient noise.
- A 4.4mm jack is needed to connect the pedal to a guitar/amp

## Guitar Subsystem

On the front and back of the guitar will be wireless microphones that will pick up the outgoing sound from the amp and will send it to the first subsystem to be used for filtering and calculations.

- Will require some form of bluetooth microphone that will connect to the pedal
- Will need some form of external power and a way to easily attach and detach from a guitar

# Criterion For Success

- Audio is noticeably changed by the varying distance between player and amp
- Audio stays consistent for player and does not jump or stutter
- Audio does not change tone or effects created by other pedals or amp presets
- Pedal is not affected by frequencies outside it’s set range (80-1500 Hz)
-Internal components are relatively inexpensive

Electronic Mouse (Cat Toy)

Jack Casey, Chuangy Zhang, Yingyu Zhang

Electronic Mouse (Cat Toy)

Featured Project

# Electronic Mouse (Cat Toy)

# Team Members:

- Yingyu Zhang (yzhan290)

- Chuangy Zhang (czhan30)

- Jack (John) Casey (jpcasey2)

# Problem Components:

Keeping up with the high energy drive of some cats can often be overwhelming for owners who often choose these pets because of their low maintenance compared to other animals. There is an increasing number of cats being used for service and emotional support animals, and with this, there is a need for an interactive cat toy with greater accessibility.

1. Get cats the enrichment they need

1. Get cats to chase the “mouse” around

1. Get cats fascinated by the “mouse”

1. Keep cats busy

1. Fulfill the need for cats’ hunting behaviors

1. Interactive fun between the cat and cat owner

1. Solve the shortcomings of electronic-remote-control-mouses that are out in the market

## Comparison with existing products

- Hexbug Mouse Robotic Cat Toy: Battery endurance is very low; For hard floors only

- GiGwi Interactive Cat Toy Mouse: Does not work on the carpet; Not sensitive to cat touch; Battery endurance is very low; Can't control remotely

# Solution

A remote-controlled cat toy is a solution that allows more cat owners to get interactive playtime with their pets. With our design, there will be no need to get low to the ground to adjust it often as it will go over most floor surfaces and in any direction with help from a strong motor and servos that won’t break from wall or cat impact. To prevent damage to household objects it will have IR sensors and accelerometers for use in self-driving modes. The toy will be run and powered by a Bluetooth microcontroller and a strong rechargeable battery to ensure playtime for hours.

## Subsystem 1 - Infrared(IR) Sensors & Accelerometer sensor

- IR sensors work with radar technology and they both emit and receive Infrared radiation. This kind of sensor has been used widely to detect nearby objects. We will use the IR sensors to detect if the mouse is surrounded by any obstacles.

- An accelerometer sensor measures the acceleration of any object in its rest frame. This kind of sensor has been used widely to capture the intensity of physical activities. We will use this sensor to detect if cats are playing with the mouse.

## Subsystem 2 - Microcontroller(ESP32)

- ESP32 is a dual-core microcontroller with integrated Wi-Fi and Bluetooth. This MCU has 520 KB of SRAM, 34 programmable GPIOs, 802.11 Wi-Fi, Bluetooth v4.2, and much more. This powerful microcontroller enables us to develop more powerful software and hardware and provides a lot of flexibility compared to ATMegaxxx.

Components(TBD):

- Product: [https://www.digikey.com/en/products/detail/espressif-systems/ESP32-WROOM-32/8544298](url)

- Datasheet: [http://esp32.net](url)

## Subsystem 3 - App

- We will develop an App that can remotely control the mouse.

1. Control the mouse to either move forward, backward, left, or right.

1. Turn on / off / flashing the LED eyes of the mouse

1. keep the cat owner informed about the battery level of the mouse

1. Change “modes”: (a). keep running randomly without stopping; (b). the cat activates the mouse; (c). runs in cycles(runs, stops, runs, stops…) intermittently (mouse hesitates to get cat’s curiosity up); (d). Turn OFF (completely)

## Subsystem 4 - Motors and Servo

- To enable maneuverability in all directions, we are planning to use 1 servo and 2 motors to drive the robotic mouse. The servo is used to control the direction of the mouse. Wheels will be directly mounted onto motors via hubs.

Components(TBD):

- Metal Gear Motors: [https://www.adafruit.com/product/3802](url)

- L9110H H-Bridge Motor Driver: [https://www.adafruit.com/product/4489](url)

## Subsystem 5 - Power Management

- We are planning to use a high capacity (5 Ah - 10 Ah), 3.7 volts lithium polymer battery to enable the long-last usage of the robotic mouse. Also, we are using the USB lithium polymer ion charging circuit to charge the battery.

Components(TBD):

- Lithium Polymer Ion Battery: [https://www.adafruit.com/product/5035](url)

- USB Lithium Polymer Ion Charger: [https://www.adafruit.com/product/259](url)

# Criterion for Success

1. Can go on tile, wood, AND carpet and alternate

1. Has a charge that lasts more than 10 min

1. Is maneuverable in all directions(not just forward and backward)

1. Can be controlled via remote (App)

1. Has a “cat-attractor”(feathers, string, ribbon, inner catnip, etc.) either attached to it or drags it behind (attractive appearance for cats)

1. Retains signal for at least 15 ft away

1. Eyes flash

1. Goes dormant when caught/touched by the cats (or when it bumps into something), reactivates (and changes direction) after a certain amount of time

1. all the “modes” worked as intended

Project Videos