Project

# Title Team Members TA Documents Sponsor
6 Mushroom Growing Tent
Honorable Mention
Cameron Fuller
Dylan Greenhagen
Elizabeth Boyer
Abhisheka Mathur Sekar design_document2.pdf
final_paper1.pdf
other1.pdf
photo1.jpeg
photo3.jpeg
presentation1.pdf
video
# Mushroom Growing Tent Project

Team Members:
- Elizabeth Boyer (eboyer2)
- Cameron Fuller (chf5)
- Dylan Greenhagen (dylancg2)

# Problem

Many people want to grow mushrooms in their own homes to experiment with safe cooking recipes, rather than relying on risky seasonal foraging, expensive trips to the store, or time and labor-intensive DIY growing methods. However, living in remote areas, specific environments, or not having the experience makes growing your own mushrooms difficult, as well as dangerous. Without proper conditions and set-up, there are fire, electrical, and health risks.

# Solution

We would like to build a mushroom tent with humidity and temperature sensors that could monitor the internal temperature and humidity, and heating, and humidity systems to match user settings continuously. There would be a visual interface to display the current temperature and humidity within the environment. It would be medium-sized (around 6 sq ft) and able to grow several batches at a time, with more success and less risk than relying on a DIY mushroom tent.

Some solutions to home-grown mushroom automation already exist. However, there is not yet a solution that encompasses all problems we have outlined. Some solutions are too small of a scale, so they don’t have the heating/cooling power for a larger scale solution. Therefore, it’s not enough to yield consistent batches. Additionally, there are solutions that give you a heater, a light set, and a humidifier, but it’s up to the user to juggle all of these modules. These can be difficult to balance and keep an eye on, but also dangerous if the user does not have experience. Spores can get released, heaters can overheat, and bacteria and mold can grow. Our solution offers an all-in-one, simple, user-friendly environment to bulk growing.

# Solution Components

## Control Unit and User Interface

The control unit and user interface are grouped together because the microcontroller is central to the design of both, and they are closely linked in function.

The user interface will involve a display that shows measured or set values for different conditions (temperature, humidity, etc) on a display, such as an LCD display, and the user will have buttons and/or knobs that allow the user to change values.

The control unit will be centered around a microcontroller on our PCB with circuitry to connect to the other subsystems.
Parts List:
1x Microcontroller
1x PCB, including small buttons and/or knobs, power circuitry
1x Display module
1x Power supply

## Temperature Sensing and Control

The temperature sensing and control components will ensure that the grow box stays at the desired temperature that promotes optimal growth. The system will include one temperature sensor that will record the current temperature of the box and feed a data output back into our PCB. From here, the microcontroller in our control unit will read the data received and send the necessary adjustments to a Peltier module. The Peltier module will be able to increase the temperature of the box according to the current temperature of the box and set temperature. Cooling will not be required, as maintaining a minimum temperature is more important than a maximum temperature for growth.
Parts List:
1x Temperature Sensor
1x Peltier module

## Humidity Sensing and Control

The humidity sensing and control system will work in a similar way to the temperature system, only with different ways to adjust the value. We will have one humidity sensor that will be continually sending data to our PCB. From here, the PCB will determine whether the current value is where it should be, or whether adjustments need to be made. If an increase in humidity is needed, the PCB will send a signal to our misting system which will activate. If a decrease is needed, a signal will be sent to our air cycling system to increase the rate of cycling, thereby decreasing the humidity within the box.
Parts List:
1x Humidity Sensor
4x Misting heads
Water tubing as needed
## Air Quality Control

The air filtration system is run constantly, as healthy mushroom growth (free of bacteria) needs clean, fresh air, and mycelium requires and uses up oxygen as it grows. Additionally, this unit is connected to the hydration sensing unit- external humidity is in most cases going to be lower than internal humidity, and cycling in new air can be used to decrease humidity. When high humidity is detected, the air filtration system will decrease the internal humidity by cycling in less humid air.
Parts List:
Flexible Air duct length as needed
1x Fan for promoting air cycling


# Criteria For Success

Our demo will show that each of our subsystems functions as expected and described below:

For the control unit and user interface, we will demonstrate that the user can change the set temperature and humidity values through buttons or knobs.

The humidity sensing and control system’s functionality will demonstrate that introducing dry air into the device activates the misting system, which requires functional sensors and a water pump.

The temperature sensing and control system demo will involve showing that the heater turns on when the measured temperature is below the set temperature.

The air quality control system’s success will be demonstrated as air movement coming from the fan enters the tent.

Habit-Forming Toothbrush Stand

John Kim, Quinn Palanca, Rahul Vasanth

Habit-Forming Toothbrush Stand

Featured Project

I spoke with a TA that approved this idea during office hours today, and they said I should submit it as a project proposal.

# Habit-Forming Toothbrush Stand

Team Members:

- Rahul Vasanth (rvasant2)

- Quinn Andrew Palanca (qpalanc2)

- John Jung-Yoon Kim (johnjk5)

# Problem

There are few habits as impactful as good dental hygiene. Brushing teeth in the morning and night can significantly improve health outcomes. Many struggle with forming and maintaining this habit. Parents might have a difficult time getting children to brush in the morning and before sleep while homeless shelter staff, rehab facility staff, and really, anyone looking to develop and track this habit may want a non-intrusive, privacy-preserving method to develop and maintain the practice of brushing their teeth in the morning. Keeping track of this information and but not storing it permanently through a mobile application is something that does not exist on the market. A small nudge is needed to keep kids, teenagers, and adults of all ages aware and mindful about their brushing habits. Additionally, many tend to zone out while brushing their teeth because they are half asleep and have no idea how long they are brushing.

# Solution

Our solution is catered toward electric toothbrushes. Unlike specific toothbrush brands that come with mobile applications, our solution applies to all electric toothbrushes, preserves privacy, and reduces screen time. We will implement a habit-forming toothbrush stand with a microcontroller, sensors, and a simple LED display that houses the electric toothbrush. A band of sensors will be wrapped around the base of the toothbrush. Lifting the toothbrush from the stand, turning it on, and starting to brush displays a timer that counts seconds up to ten minutes. This solves the problem of brushing too quickly or losing track of time and brushing for too long. Additionally, the display will provide a scorecard for brushing, with 14 values coming from (morning, night) x (6daysago, 5daysago, . . . , today) for a "record" of one week and 14 possible instances of brushing. This will augment the user's awareness of any new trends, and potentially help parents, their children, and other use cases outlined above. We specifically store just one week of data as the goal is habit formation and not permanent storage of potentially sensitive health information in the cloud.

# Solution Components

## Subsystem 1 - Sensor Band

The sensor band will contain a Bluetooth/Wireless Accelerometer and Gyroscope, or Accelerometer, IR sensor (to determine height lifted above sink), Bluetooth/Wireless connection to the microcontroller. This will allow us to determine if the electric toothbrush has been turned on. We will experiment with the overall angle, but knowing whether the toothbrush is parallel to the ground, or is lifted at a certain height above the sink will provide additional validation. These outputs need to be communicated wirelessly to the habit-forming toothbrush stand.

Possibilities: https://www.amazon.com/Accelerometer-Acceleration-Gyroscope-Electronic-Magnetometer/dp/B07GBRTB5K/ref=sr_1_12?keywords=wireless+accelerometer&qid=1643675559&sr=8-12 and individual sensors which we are exploring on Digikey and PCB Piezotronics as well.

## Subsystem 2 - Toothbrush Base/Stand and Display

The toothbrush stand will have a pressure sensor to determine when the toothbrush is lifted from the stand (alternatively, we may also add on an IR sensor), a microcontroller with Bluetooth capability, and a control unit to process sensor outputs as well as an LED display which will be set based on the current state. Additionally, the stand will need an internal clock to distinguish between morning and evening and mark states accordingly. The majority of sensors are powered by 3.3V - 5V. If we use a battery, we may include an additional button to power on the display (or just have it turn on when the pressure sensor / IR sensor output confirms the toothbrush has been lifted, or have the device plug into an outlet.

# Criterion For Success

1. When the user lifts the toothbrush from the stan and it begins to vibrate (signaling the toothbrush is on), the brushing timer begins and is displayed.

2. After at least two minutes have passed and the toothbrush is set back on the stand, the display correctly marks the current day and period (morning or evening).

3. Track record over current and previous days and the overall weekly record is accurately maintained. At the start of a new day, the record is shifted appropriately.

Project Videos