Project

# Title Team Members TA Documents Sponsor
2 Seeing Ⓘ Hat
Matthew Esses
Mitchell Gilmer
Shreya Venkat
Sanjana Pingali design_document1.pdf
design_document2.pdf
final_paper1.pdf
presentation1.pptx
proposal1.pdf
# Seeing Ⓘ Hat
Team Members
Shreya Venkat (shreyav3)

Mitchell Kalogridis Elekzandros Varik Gilmer (gilmer2)

Matthew Esses (messes2)

# PROBLEM
Individuals with visual impairments encounter difficulties in independent navigation of their surroundings, causing lowered spatial awareness and concern with their personal safety.While there are solutions such as canes or seeing eye dogs, there is an issue with detecting range for objects further than a meter out. Seeing eye dogs only take the owner into a certain direction and are used to make sure the user stays in a straight line from their directions. Dogs can unfortunately become distracted by things like food or children petting the, even with training. Also, there are likely people allergic to dogs or with traumatic experiences that wouldn't want one, while the dog requires being taken care of constantly as a pet.


# SOLUTION
We want to make a hat designed to empower blind individuals by offering a 360-degree field of view. It will use advanced LiDAR sensors for wayfinding and dead reckoning, and Doppler RADARs for collision detection. This technology translates the surrounding environment into real-time spatial data, allowing users to navigate their surroundings with newfound independence. The hat also includes vibration motors strategically placed to indicate the direction of the nearest objects, aiding users in easily navigating their environment.
# SOLUTION COMPONENTS

# Subsystem 0: Microcontroller processing unit
- **STM32F401:** Microcontroller with 11 PWM outputs, massive processing power
## SUBSYSTEM 1: IMAGING AND SENSING SYSTEM
This subsystem focuses on capturing real-time spatial data
- **LIDAR SENSOR USING I2C:** Primary imaging sensor for user dead reckoning
- **Accelerometer and magnetometer** Tracking and adjusting user movement for data calculations
- **HB100 Doppler RADAR:** Secondary emergency collision detection sensor
- **Small LCD screen:** Diagnostic tool (not for user, this is for debugging)
## SUBSYSTEM 2: SCANNING MECHANISM
This subsystem focuses on the rotation of the scanner and the associated motor control.
- **Motor Driver:** Controlling rotational speed of the scanner using PWM input from the microcontroller
- **DC Brushless Motor** Main mechanical power source
- **Hall Effect Sensor Circuit:** For determining the direct angular positioning of a motor
- **3D printed parts and slip ring:** Mechanical backbone of project for properly transferring rotation to the LiDAR
## SUBSYSTEM 3: HAPTIC FEEDBACK SYSTEM
This subsystem includes vibration motors for providing haptic feedback to the user.
- **Demultiplexers/Decoders:** These receive output from the STM32 and outputs a PWM signal from the microcontroller to the vibration motors.
- **16 Vibration Motors:** Place vibration motors at various angles within the hat to indicate the direction of the nearest objects. In a power of 2 to mesh with the demultiplexers..
# SUBSYSTEM 4: Battery Power Supply Subsystem:
Create boost/buck converter circuits for power supplies to ensure uniform voltage supply.
- **LiPO batteries** - May be 3.7V in series - lightest reasonable weight, small form factor power source
- **Battery holder:** Holding the battery
- **eFuse current limiter, undercurrent included:** Safety sensor for microcontroller and components for rapid shut off
- **Over/Undervoltage lockout:** Safety sensor for components for rapid shut off
- **Buck converter:** Stepping down voltage for microcontroller and sensors
### A buck converter may or may not be required depending on the final motors and microprocessors. The microprocessor is rated for 3.75 - 5.2V. Our preferred method of accomplishing this voltage step down would be a buck converter. The in-line non-switching solutions appear to not be viable with the current draw requirements.
### The microprocessors range is close to the battery pack range. Depending on the final system requirement, the system may be viable to operate on a singular IC provided by Texas Instruments.
### If the buck converter is not an IC, then we would need to build a buck converter using a buck controller.
# CRITERION FOR SUCCESS
1) The Hall Effect sensor, magnetometer, and accelerometer are able to provide accurate heading and sensor data for the haptic feedback within 45 degrees accuracy when displaced.
2) Able to image a room, such as ECEB 2072, from the center at resolution of at least 0.2 meters using haptic feedback and with a monitor for others’ viewing as a diagnostic tool with a 360 degree range with an angular resolution and accuracy of 15 degrees.
3) Able to detect objects approaching the user from front, back, below, and both sides within 2 seconds using both the Doppler proximity sensor and the LIDAR.
4) Navigational Success: The Hat successfully aids a blindfolded user in navigating the second and third floors of ECEB without difficulties.
5) Power Supply Stability: Power system safely shuts down during extreme conditions such as battery failure and short circuit conditions without damaging the hardware.

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos