Project

# Title Team Members TA Documents Sponsor
21 Automatic Water Bottle Filler
Abby Mohan
Jakub Migus
Priyank Jain
Nikhil Arora design_document2.pdf
final_paper1.pdf
other1.pdf
photo1.jpeg
photo2.JPG
presentation1.pdf
proposal2.pdf
video
# Automatic Water Bottle Filler

Team Members:

- Priyank Jain (priyank3)

- Abby Mohan (ammohan2)

- Jakub Migus (jmigus2)

# Problem

In normal liquid dispensing and water bottle filling systems, the process requires the user’s attention and constant manual activation of the device. This may require the holding of a button, the action of pushing the bottle against a sensor for a specific amount of time, or holding the bottle in front of a sensor until it is full. If the user gets distracted or is unable to provide that attention (blindness or lack of motor function), liquid may spill or the bottle may not be filled enough.

# Solution

Our goal with this project is to make an automatic water bottle filling station. Our device senses when a water bottle is placed underneath it, begins filling the bottle with water once a start button is pressed, determines when the bottle is full and shuts off automatically. After placing the bottle on a platform and pressing a button, the user can walk away knowing their bottle will be filled accurately.

# Solution Components
## Sensing Component

This subsystem utilizes multiple sensors including an ultrasonic sensor to measure the water level and a light-based sensor to determine the height of the bottle.

## Control

This subsystem connects the sensors to the water system. It receives data from the sensors, compares the water level height to the height of the water bottle, then decides to either begin, continue, or stop dispensing water.

## Display/Interface System

An LCD display will show instructions for the user and will display simple messages. A few push buttons will be included for manual filling and selection of desired amount of liquid (ex. Half bottle, full bottle)

## Water System

This subsystem utilizes a water tank attached to a pump and tubing, which transport water to the dispenser.


# Criterion for Success

The device…

- detects a water bottle and accurately measures the height
- monitors the water level in the bottle
- stops filling when a desired water level is reached

If there is no bottle/ the bottle is removed, the device stops filling water.

Modularized Electronic Locker

Jack Davis, Joshua Nolan, Jake Pu

Modularized Electronic Locker

Featured Project

Group Member: Jianhao (Jake) Pu [jpu3], Joshua Nolan [jtnolan2], John (Jack) Davis [johnhd4]

Problem:

Students living off campus without a packaging station are affected by stolen packages all the time. As a result of privacy concerns and inconsistent deployment, public cameras in Champaign and around the world cannot always be relied upon. Therefore, it can be very difficult for victims to gather evidence for a police report. Most of the time, the value of stolen items is small and they are usually compensated by the sellers (Amazon and Apple are very understanding). However, not all deliveries are insured and many people are suffering from stolen food deliveries during the COVID-19 crisis. We need a low-cost solution that can protect deliveries from all vendors.

Solution Overview:

Our solution is similar to Amazon Hub Apartment Locker and Luxer One. Like these services, our product will securely enclose the package until the owners claim the contents inside. The owner of the contents can claim it using a phone number or a unique user identification code generated and managed by a cloud service.

The first difference we want to make from these competitors is cost. According to an article, the cost of a single locker is from $6000 - $20000. We want to minimize such costs so that we can replace the traditional mailbox. We talked to a Chinese manufacturer and got a hardware quote of $3000. We can squeeze this cost if we just design our own control module on ESP32 microcontrollers.

The second difference we want to make is modularity. We will have a sensor module, a control module, a power module and any number of storage units for hardware. We want to make standardized storage units that can be stacked into any configuration, and these storage units can be connected to a control module through a communication bus. The control module houses the hardware to open or close all of the individual lockers. A household can purchase a single locker and a control module just for one family while apartment buildings can stack them into the lockers we see at Amazon Hub. I think the hardware connection will be a challenge but it will be very effective at lowering the cost once we can massively manufacture these unit lockers.

Solution Components:

Storage Unit

Basic units that provide a locker feature. Each storage unit will have a cheap microcontroller to work as a slave on the communication bus and control its electronic lock (12V 36W). It has four connectors on top, bottom, left, and right sides for stackable configuration.

Control Unit

Should have the same dimension as one of the storage units so that it could be stacked with them. Houses ESP32 microcontroller to run control logics on all storage units and uses the built-in WiFi to upload data to a cloud server. If sensor units are detected, it should activate more security features accordingly.

Power Unit

Power from the wall or from a backup battery power supply and the associated controls to deliver power to the system. Able to sustain high current in a short time (36W for each electronic lock). It should also have protection against overvoltage and overcurrent.

Sensor Modules

Sensors such as cameras, motion sensors, and gyroscopes will parlay any scandalous activities to the control unit and will be able to capture a photo to report to authorities. Sensors will also have modularity for increased security capabilities.

Cloud Support

Runs a database that keeps user identification information and the security images. Pushes notification to end-users.

Criterion for Success:

Deliverers (Fedex, Amazon, Uber Eats, etc.) are able to open the locker using a touchscreen and a use- provided code to place their package inside. Once the package is inside of the locker, a message will be sent to the locker owner that their delivery has arrived. Locker owners are able to open the locker using a touchscreen interface. Owners are also able to change the passcode at any time for security reasons. The locker must be difficult to break into and offer theft protection after multiple incorrect password attempts.

Project Videos