Project

# Title Team Members TA Documents Sponsor
44 Brain-controlled portable programmable embedded system
Research Award
Shiyang Liu
Xuanyu Zhong
Yujie Chen
design_document0.pdf
final_paper0.pdf
presentation0.pdf
proposal0.pdf
video0.mp4
Nowadays, people use their hands to control modern computing systems as well as consumer electronics. We type keyboards, or swipe on tablets with our fingers as a means of input. Many other people also take the advantage of voice control everyday which is being considered as one of the very innovative inputting methods. Based on the trend of how technology gets developed today, we see the next step of inputting as we getting use of our brains.

Imagine that we need to take a look at the next step of a recipe when we get our hands messed with all the food while cooking. Swiping on the iPad then sounds very tedious. Instead, would it be nice to do so by just staring at a specific region on the screen and turn to another page of cookbook. This region blinks at a predefined frequency. By looking at it, our brains will also "blink" at the same frequency and the generated signals can be captured and distinguished from other signals with different frequencies, which will consequently allows various control options. (not just flipping recipe pages)

Our goal of this project is to build a prototype of brain-controlled portable programmable embedded system with a LCD screen that will satisfy basic functionality of our everyday computation and its user interface. With the help of electroencephalography, our device will be built on top of a micro-controller which reads input from various signals from our brains and thus supports hands-free interactions between users and computing system which will be reflected on a built-in LCD display.

A simple diagram can be found here which illustrates the basic idea of this project:
http://i1285.photobucket.com/albums/a599/sc21cn/ScreenShot2013-01-31at25324PM_zps11908c3f.png
[Note that our project consists of the micro-controller, LCD screen along with some other hardware components and wireless part. The graph represents what we propose to do within this semester (a sort of prototype). However, it may be made more advanced in the future, such as integrating the screen onto the glasses or caps people wear everyday. But it is just for future consideration.]

Environmental Sensing for Firefighters

Andri Teneqexhi, Lauren White, Hyun Yi

Environmental Sensing for Firefighters

Featured Project

Hyun Yi, Lauren White, and Andri Teneqexhi earned the Instructor's Award in the Fall of 2013 for their work on the Environmental Sensing for Firefighters.

"Engineering is all about solving real life problems and using the solutions to improve the lives of others. ECE 445 allows you to actually delve deeper into what this really means by providing students the chance to undergo the engineering design process. This requires taking all of the theoretical knowledge, lab experiences, and ultimately, everything that you have ever learned in life, and applying it to your project. Though, there is structure to the course and deadlines in place to measure your team's progress, the actual design, implementation, and success of your project is all determined by you. Unlike any other course that I have taken, I've gained an appreciation for the utilization and benefits of external resources, unforeseen scheduling delays, delegating tasks, and most importantly, teamwork. I consider ECE 445 to be a crash course into real life engineering and a guide to become a successful engineer." -- Lauren White