Project

# Title Team Members TA Documents Sponsor
29 Sign Language Teaching Glove
Daniel Fong
Mayapati Tiwari
Reebbhaa Mehta
Igor Fedorov design_document0.pdf
final_paper0.pdf
presentation0.ppt
proposal0.pdf
We are making a glove which will be able to teach a person sign language. The vocabulary will consist of the alphabet and round about 20-30 words. It will have gyroscopes in each of the fingers and flex sensors throughout the length of the fingers to know the position of the fingers and that of the hands relative to each other. The information will be sent to a microcontroller via bluetooth which will determine what the person has said and check if the actions performed were correct. If the gesture is correct the LEDs (that will run along the back of your fingers) will turn green, otherwise they will be red, if only one finger is out of place in your gesture only the leds running along that finger will remain red. The other mechanism we are implementing for feedback control is haptic feedback, using a vibration motor in every glove finger, it will vibrate to alert you about the incorrect placement of your finger.

The app will have a practice mode through which you can practice the gestures, and once you are confident that you know the actions, you can test yourself and the app will tell you how you fared.

Interactive Proximity Donor Wall Illumination

Sungmin Jang, Anita Jung, Zheng Liu

Interactive Proximity Donor Wall Illumination

Featured Project

Team Members:

Anita Jung (anitaj2)

Sungmin Jang (sjang27)

Zheng Liu (zliu93)

Link to the idea: https://courses.engr.illinois.edu/ece445/pace/view-topic.asp?id=27710

Problem:

The Donor Wall on the southwest side of first floor in ECEB is to celebrate and appreciate everyone who helped and donated for ECEB.

However, because of poor lighting and color contrast between the copper and the wall behind, donor names are not noticed as much as they should, especially after sunset.

Solution Overview:

Here is the image of the Donor Wall:

http://buildingcampaign.ece.illinois.edu/files/2014/10/touched-up-Donor-wall-by-kurt-bielema.jpg

We are going to design and implement a dynamic and interactive illuminating system for the Donor Wall by installing LEDs on the background. LEDs can be placed behind the names to softly illuminate each name. LEDs can also fill in the transparent gaps in the “circuit board” to allow for interaction and dynamic animation.

And our project’s system would contain 2 basic modes:

Default mode: When there is nobody near the Donor Wall, the names are softly illuminated from the back of each name block.

Moving mode: When sensors detect any stimulation such as a person walking nearby, the LEDs are controlled to animate “current” or “pulses” flowing through the “circuit board” into name boards.

Depending on the progress of our project, we have some additional modes:

Pressing mode: When someone is physically pressing on a name block, detected by pressure sensors, the LEDs are controlled to

animate scattering of outgoing light, just as if a wave or light is emitted from that name block.

Solution Components:

Sensor Subsystem:

IR sensors (PIR modules or IR LEDs with phototransistor) or ultrasonic sensors to detect presence and proximity of people in front of the Donor Wall.

Pressure sensors to detect if someone is pressing on a block.

Lighting Subsystem:

A lot of LEDs is needed to be installed on the PCBs to be our lighting subsystem. These are hidden as much as possible so that people focus on the names instead of the LEDs.

Controlling Subsystem:

The main part of the system is the controlling unit. We plan to use a microprocessor to process the signal from those sensors and send signal to LEDs. And because the system has different modes, switching between them correctly is also important for the project.

Power Subsystem:

AC (Wall outlet; 120V, 60Hz) to DC (acceptable DC voltage and current applicable for our circuit design) power adapter or possible AC-DC converter circuit

Criterion for success:

Whole system should work correctly in each mode and switch between different modes correctly. The names should be highlighted in a comfortable and aesthetically pleasing way. Our project is acceptable for senior design because it contains both hardware and software parts dealing with signal processing, power, control, and circuit design with sensors.

Project Videos