Project

# Title Team Members TA Documents Sponsor
12 Chalk Robot
Instructor's Award
Enyu Luo
Jun Min Leonard Lim
Neil Christanto
design_document0.pdf
final_paper0.pdf
presentation0.presentation
proposal0.pdf
A stand alone two-wheeled (with an extra ball wheel for balance) robot that will take a picture file and draw the outline of the picture on the floor. There are two main parts: the image processing unit and the robot itself. After the image is read, we will convert it to an outline then vectorize it. Then we send the vectors to a microcontroller that will control the two motors, thus controlling the movement of the robot. Since the image doesn't have to be processed in real time, something like raspberry-pi or panda board will work. For the chalk, we will use an actuator in the middle of the robot, with a spring on top of it to make sure that the force exerted on the chalk is pretty much constant. To determine the position of the robot, encoders will be attached to the wheels (the position relative to the starting point is calculated).

S.I.P. (Smart Irrigation Project)

Jackson Lenz, James McMahon

S.I.P. (Smart Irrigation Project)

Featured Project

Jackson Lenz

James McMahon

Our project is to be a reliable, robust, and intelligent irrigation controller for use in areas where reliable weather prediction, water supply, and power supply are not found.

Upon completion of the project, our device will be able to determine the moisture level of the soil, the water level in a water tank, and the temperature, humidity, insolation, and barometric pressure of the environment. It will perform some processing on the observed environmental factors to determine if rain can be expected soon, Comparing this knowledge to the dampness of the soil and the amount of water in reserves will either trigger a command to begin irrigation or maintain a command to not irrigate the fields. This device will allow farmers to make much more efficient use of precious water and also avoid dehydrating crops to death.

In developing nations, power is also of concern because it is not as readily available as power here in the United States. For that reason, our device will incorporate several amp-hours of energy storage in the form of rechargeable, maintenance-free, lead acid batteries. These batteries will charge while power is available from the grid and discharge when power is no longer available. This will allow for uninterrupted control of irrigation. When power is available from the grid, our device will be powered by the grid. At other times, the batteries will supply the required power.

The project is titled S.I.P. because it will reduce water wasted and will be very power efficient (by extremely conservative estimates, able to run for 70 hours without input from the grid), thus sipping on both power and water.

We welcome all questions and comments regarding our project in its current form.

Thank you all very much for you time and consideration!