Project

# Title Team Members TA Documents Sponsor
1 Smart Sprinkler Robot System
Area Award: Conservation
Denis Kurtovic
Jose Orozco
Kevin Johnson
appendix0.pdf
design_document0.pdf
final_paper0.pdf
presentation0.presentation
proposal0.pdf

Our project goal was to make a robotic sprinkler system that can detect soil moisture content and check online weather forecasts to determine whether the ground needs to be watered. After completing our product, we were able to meet all of our requirements.



The two main parts of this design are the sprinkler robot and the base station. The base station checks the weather forecast to determine if the chance of precipitation is low enough to warrant watering for the day. If the chance of rain is high enough, then the robot will not be deployed; otherwise, it will send the robot out to measure the soil moisture at specific points on the lawn. The sprinkler robot measures the soil moisture by deploying a two-point-probe into the ground to measure resistance. This data is then sent wirelessly to the base station where it determines whether or not to water that area. If it is determined the area needs watering, then the robot will turn on its sprinkler system and water the area until the base station tells it to stop. After that, the robot moves on to the next area that the base station tells it to go to. When the robot is finished, it returns to the base station.



This product is commercially viable because it is a smart watering system that does not require the installation of multiple expensive pipes and probes. It both reduces the water waste of a traditional sprinkler system while still allowing for it to be transported to a new location.



This project was sponsored by MIT Lincoln Laboratory.

GYMplement

Srinija Kakumanu, Justin Naal, Danny Rymut

Featured Project

**Problem:** When working out at home, without a trainer, it’s hard to maintain good form. Working out without good form over time can lead to injury and strain.

**Solution:** A mat to use during at-home workouts that will give feedback on your form while you're performing a variety of bodyweight exercises (multiple pushup variations, squats, lunges,) by analyzing pressure distributions and placement.

**Solution Components:**

**Subsystem 1: Mat**

- This will be built using Velostat.

- The mat will receive pressure inputs from the user.

- Velostat is able to measure pressure because it is a piezoresistive material and the more it is compressed the lower the resistance becomes. By tracking pressure distribution it will be able to analyze certain aspects of the form and provide feedback.

- Additionally, it can assist in tracking reps for certain exercises.

- The mat would also use an ultrasonic range sensor. This would be used to track reps for exercises, such as pushups and squats, where the pressure placement on the mat may not change making it difficult for the pressure sensors to track.

- The mat will not be big enough to put both feet and hands on it. Instead when you are doing pushups you would just be putting your hands on it

**Subsystem 2: Power**

- Use a portable battery back to power the mat and data transmitter subsystems.

**Subsystem 3: Data transmitter**

- Information collected from the pressure sensors in the mat will be sent to the mobile app via Bluetooth. The data will be sent to the user’s phone so that we can help the user see if the exercise is being performed safely and correctly.

**Subsystem 4: Mobile App**

- When the user first gets the mat they will be asked to perform all the supported exercises and put it their height and weight in order to calibrate the mat.

- This is where the user would build their circuit of exercises and see feedback on their performance.

- How pressure will indicate good/bad form: in the case of squats, there would be two nonzero pressure readings and if the readings are not identical then we know the user is putting too much weight on one side. This indicates bad form. We will use similar comparisons for other moves

- The most important functions of this subsystem are to store the calibration data, give the user the ability to look at their performances, build out exercise circuits and set/get reminders to work out

**Criterion for Success**

- User Interface is clear and easy to use.

- Be able to accurately and consistently track the repetitions of each exercise.

- Sensors provide data that is detailed/accurate enough to create beneficial feedback for the user

**Challenges**

- Designing a circuit using velostat will be challenging because there are limited resources available that provide instruction on how to use it.

- We must also design a custom PCB that is able to store the sensor readings and transmit the data to the phone.