Teamwork

Description

The teamwork grade is composed of two assignments. The first teamwork evaluation, administered shortly after the Design Review phase, consists of feedback questions designed to help the ECE 445 Staff better understand how each student's group is progressing towards the final demo. If all questions are answered completely and thoughtfully, the student will be awarded 5 points for completion of the assignment. No partial credit will be awarded for late submissions. The survey may be completed on Canvas.

The second teamwork evaluation is a subjective score that will be awarded at the end of the semester according to the criteria below. Partner evaluations may be completed on Canvas at the end of the semester to help determine this score. Responses to both surveys are confidential and will not be disclosed to anyone outside the course staff.

Requirements and Grading

Each student in a group will be evaluated on the following criteria:

Submission and Deadlines

The teamwork evaluation forms should be completed on Canvas by the deadlines listed on the Course Calendar. These forms will be taken into account when teamwork grades are assigned, however, they may not fully determine the teamwork grade.

Amphibious Spherical Explorer

Kaiwen Chen, Junhao Su, Zhong Tan

Amphibious Spherical Explorer

Featured Project

The amphibious spherical explorer (ASE) is a spherical robot for home monitoring, outdoor adventure or hazardous environment surveillance. Due to the unique shape of the robot, ASE can travel across land, dessert, swamp or even water by itself, or be casted by other devices (e.g. slingshot) to the mission area. ASE has a motion-sensing system based on Inertial Measurement Unit (IMU) and rotary magnetic encoder, which allows the internal controller to adjust its speed and attitude properly. The well-designed control system makes the robot free of visible wobbliness when it is taking actions like acceleration, deceleration, turning and rest. ASE is also a platform for research on control system design. The parameters of the internal controller can be assigned by an external control panel in computer based on MATLAB Graphic User Interface (GUI) which communicates with the robot via a WiFi network generated by the robot. The response of the robot can be recorded and sent back to the control panel for further analysis. This project is completely open-sourced. People who are interested in the robot can continue this project for more interesting features, such as adding camera for real-time surveillance, or controller design based on machine learning.

Project Videos