Meeting with Your TA

Description

By the Thursday of the third week, you must have a project approved, and should be ready to get working! At this time, you'll need to log into PACE and submit your schedule for the semester. Please be sure to make this as accurate as possible because once it's submitted, it can only be changed manually. Making a block of your schedule red means that you are unavailable during that time.

Once each person on your team has submitted their schedule, your TA will be able to easily check for available times to schedule a weekly meeting. Your TA should contact you, usually by the fourth week, via email, to set up a weekly meeting schedule at mutual convenience. During the first weekly meeting, your TA will assign your team a locker and a lab kit.

Weekly meetings with your TA are required and will be held throughout the entire semester until demonstrations are completed. Your TA is your project manager. The "homework" of the course consists of preparing for the weekly meetings. Your TA will evaluate your lab notebook each week, provide feedback, and recommend improvements. At each meeting you will be expected to present your progress since your last meeting, plans for the coming week, and any technical or administrative questions you need to discuss with your TA. You are expected to arrive on time and prepared to make good use of your time with your TA. Your TA may require that each team member to fill out the Progress Report Template and submit it to them prior to each weekly meeting.

Requirements and Grading

Attendance and participation in weekly meetings is required and will affect Teamwork and Lab Notebook scores. If you can't make it to a particular weekly meeting, it is your responsibility to inform your TA prior to the meeting time and set up an alternate time.

Submission and Deadlines

Your schedule must be submitted by the end of the third week of class and you will receive an email from your TA shortly after. Your first meeting with your TA should be during the fourth week of the semester.

El Durazno Wind Turbine Project

Alexander Hardiek, Saanil Joshi, Ganpath Karl

El Durazno Wind Turbine Project

Featured Project

Partners: Alexander Hardiek (ahardi6), Saanil Joshi (stjoshi2), and Ganpath Karl (gkarl2)

Project Description: We have decided to innovate a low cost wind turbine to help the villagers of El Durazno in Guatemala access water from mountains, based on the pitch of Prof. Ann Witmer.

Problem: There is currently no water distribution system in place for the villagers to gain access to water. They have to travel my foot over larger distances on mountainous terrain to fetch water. For this reason, it would be better if water could be pumped to a containment tank closer to the village and hopefully distributed with the help of a gravity flow system.

There is an electrical grid system present, however, it is too expensive for the villagers to use. Therefore, we need a cheap renewable energy solution to the problem. Solar energy is not possible as the mountain does not receive enough solar energy to power a motor. Wind energy is a good alternative as the wind speeds and high and since it is a mountain, there is no hindrance to the wind flow.

Solution Overview: We are solving the power generation challenge created by a mismatch between the speed of the wind and the necessary rotational speed required to produce power by the turbine’s generator. We have access to several used car parts, allowing us to salvage or modify different induction motors and gears to make the system work.

We have two approaches we are taking. One method is converting the induction motor to a generator by removing the need of an initial battery input and using the magnetic field created by the magnets. The other method is to rewire the stator so the motor can spin at the necessary rpm.

Subsystems: Our system components are split into two categories: Mechanical and Electrical. All mechanical components came from a used Toyota car such as the wheel hub cap, serpentine belt, car body blade, wheel hub, torsion rod. These components help us covert wind energy into mechanical energy and are already built and ready. Meanwhile, the electrical components are available in the car such as the alternator (induction motor) and are designed by us such as the power electronics (AC/DC converters). We will use capacitors, diodes, relays, resistors and integrated circuits on our printed circuit boards to develop the power electronics. Our electrical components convert the mechanical energy in the turbine into electrical energy available to the residents.

Criterion for success: Our project will be successful when we can successfully convert the available wind energy from our meteorological data into electricity at a low cost from reusable parts available to the residents of El Durazno. In the future, their residents will prototype several versions of our turbine to pump water from the mountains.